First Law

Theorem

01: First Law of Thermodynamics

1. Statement of the Law

Energy is conserved in all processes. It can change form or transfer between system and surroundings, but cannot be created or destroyed.

ΔE=QW\boxed{\Delta E = Q - W}

where E=U+Ek+EpE = U + E_k + E_p is the total energy of the system.


2. Mathematical Form (Closed System)

For a differential process: δQδW=dU+dEk+dEp\delta Q - \delta W = dU + dE_k + dE_p

Neglecting kinetic and potential energy: δQδW=dU\boxed{\delta Q - \delta W = dU}

Integrating between states 1 and 2: Q12W12=U2U1Q_{12} - W_{12} = U_2 - U_1

Sign Convention

  • (Q>0Q > 0): heat into system
  • (W>0W > 0): work done by system

3. Forms of Work

TypeDifferential FormRemarks
Boundary (expansion)( δWb=PdV\delta W_b = P\,dV )Only for quasi-static (reversible)
Shaft work( δWs=τdθ\delta W_s = \tau\,d\theta )Rotation
Electrical( δWe=Edq\delta W_e = E\,dq )Potential × charge
Surface( δWσ=σdA\delta W_\sigma = \sigma\,dA )Interface creation
Magnetic( δWm=HdB\delta W_m = H\,dB )Magnetic energy
Flow work( δWflow=Pdv\delta W_{flow} = P\,dv )Present in open systems

4. Energy Balance for Control Volume (Open System)

Start with the Reynolds Transport Theorem:

dEsysdt=ddtCVρedV+m˙(e+Pv+v22+gz)\frac{dE_{sys}}{dt} = \frac{d}{dt}\int_{CV} \rho e \, dV + \dot{m}(e + Pv + \tfrac{v^2}{2} + gz)

Simplify to the steady-flow energy equation:

Q˙W˙=m˙(h2h1+v22v122+g(z2z1))\boxed{\dot{Q} - \dot{W} = \dot{m}\left(h_2 - h_1 + \frac{v_2^2 - v_1^2}{2} + g(z_2 - z_1)\right)}

where (h=u+Pv)(h = u + Pv).

If kinetic and potential changes are negligible: Q˙W˙=m˙(h2h1)\dot{Q} - \dot{W} = \dot{m}(h_2 - h_1)


5. Specific Forms for Common Devices

DeviceSimplificationEquation
NozzleAdiabatic, (W=0W=0), no height change( h1+v122=h2+v222h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2} )
DiffuserReverse of nozzle( h2>h1h_2 > h_1 )
CompressorAdiabatic, steady( W˙in=m˙(h2h1)\dot{W}_{in} = \dot{m}(h_2 - h_1) )
TurbineAdiabatic, steady( W˙out=m˙(h1h2)\dot{W}_{out} = \dot{m}(h_1 - h_2) )
Throttle (valve)( Q=W=0Q=W=0 )( h1=h2h_1 = h_2 )
Heat exchangerNegligible work( Q˙A+Q˙B=0\dot{Q}_A + \dot{Q}_B = 0 )

6. Enthalpy

Defined for convenience in open systems: h=u+Pvh = u + Pv Differential: dh=du+PdV+VdPdh = du + PdV + VdP At constant pressure heating: δQP=dh\delta Q_P = dh


7. Internal Energy and Enthalpy of Ideal Gases

For an ideal gas, (uu) and (hh) depend only on (TT): du=cvdT,dh=cpdTdu = c_v dT, \quad dh = c_p dT cpcv=Rc_p - c_v = R

Integrating: u2u1=T1T2cv(T)dTu_2 - u_1 = \int_{T_1}^{T_2} c_v(T)\,dT h2h1=T1T2cp(T)dTh_2 - h_1 = \int_{T_1}^{T_2} c_p(T)\,dT


8. Polytropic Processes (Closed System)

General work relation: W12=V1V2PdVW_{12} = \int_{V_1}^{V_2} P\,dV

If (PVn=constantPV^n = \text{constant}): W12=P2V2P1V11nW_{12} = \frac{P_2V_2 - P_1V_1}{1 - n} Q12=ΔU+W12Q_{12} = \Delta U + W_{12} Special cases:

ProcessExponent (n)Expression
Isothermal1( W=P1V1ln(V2/V1)W = P_1V_1 \ln(V_2/V_1) )
Adiabatic (reversible)( γ=cp/cv\gamma = c_p/c_v )( PVγ=constPV^\gamma = \text{const} )
Isochoric\infty( W=0W = 0 )
Isobaric0( W=P(V2V1)W = P(V_2 - V_1) )

9. Energy in Chemical Systems

For chemical reactions, the first law extends to include chemical work (bond rearrangements).

Let (UU) include chemical internal energy (UchemU_{chem}): ΔU=QW+iνiΔuf,i0\Delta U = Q - W + \sum_i \nu_i \Delta u_{f,i}^0

At constant pressure: ΔHrxn=QP=iνihf,i0\boxed{\Delta H_{rxn} = Q_P = \sum_i \nu_i h_{f,i}^0}

where:

  • ( νi\nu_i ): stoichiometric coefficient (+ for products, − for reactants)
  • ( hf0h_f^0 ): standard molar enthalpy of formation

10. Gibbs Energy and Helmholtz Energy

Two derived energy potentials simplify equilibrium and spontaneous process analysis.

PotentialDefinitionNatural VariablesUse
Internal Energy (U)(U)(S, V)General system energy
Enthalpy (H)(U + PV)(S, P)Constant pressure heating
Helmholtz Free Energy (A)(U - TS)(T, V)Constant (T,V) processes
Gibbs Free Energy (G)(U + PV - TS = H - TS)(T, P)Constant (T,P) processes

Differentials:

dU=TdSPdVdH=TdS+VdPdA=SdTPdVdG=SdT+VdP\begin{aligned} dU &= T\,dS - P\,dV \\ dH &= T\,dS + V\,dP \\ dA &= -S\,dT - P\,dV \\ dG &= -S\,dT + V\,dP \end{aligned}

At constant (T,PT,P): ΔG=ΔHTΔS\Delta G = \Delta H - T\Delta S

A spontaneous process (in a closed isothermal–isobaric system) requires: ΔG<0\boxed{\Delta G < 0}

At equilibrium: ( ΔG=0\Delta G = 0 ).


11. Chemical Potential

For multicomponent systems: G=iniμiG = \sum_i n_i \mu_i and differential: dG=SdT+VdP+iμidnidG = -S\,dT + V\,dP + \sum_i \mu_i\,dn_i

At constant (T,PT,P): μi=(Gni)T,P,nji\mu_i = \left( \frac{\partial G}{\partial n_i} \right)_{T,P,n_{j\ne i}} The condition for chemical equilibrium: iνiμi=0\sum_i \nu_i \mu_i = 0


12. Enthalpy and Gibbs Energy of Reaction

At constant (T,PT,P): ΔrH=iνihi\Delta_r H = \sum_i \nu_i h_i ΔrG=iνigi\Delta_r G = \sum_i \nu_i g_i

and the equilibrium constant: K=eΔrG/(RT)\boxed{K = e^{-\Delta_r G^\circ / (RT)}}

This links macroscopic thermodynamics to equilibrium chemistry.


13. Energy Diagrams

TypeSystemDominant Terms
Adiabatic turbineOpen( W˙=m˙(h1h2)\dot{W} = \dot{m}(h_1 - h_2) )
Electrochemical cellClosed( Welec=ΔGW_{elec} = -\Delta G )
Heat engineCyclic( Wnet=QinQoutW_{net} = Q_{in} - Q_{out} )
Chemical reactorOpen( Q+W=ΔHrxnQ + W = \Delta H_{rxn} )

14. Summary Equations

CategoryEquationConditions
Closed system( QW=ΔUQ - W = \Delta U )General
Steady-flow( Q˙W˙=m˙(h2h1+v22+gz)\dot{Q} - \dot{W} = \dot{m}(h_2 - h_1 + \frac{v^2}{2} + gz) )Open, steady
Adiabatic reversible( PVγ=constPV^\gamma = \text{const} )Ideal gas
Enthalpy( h=u+Pvh = u + Pv )Definition
Gibbs( G=HTSG = H - TS )Definition
Equilibrium( νiμi=0\sum \nu_i \mu_i = 0 )Reaction equilibrium

15. References

  • Moran & Shapiro, Fundamentals of Engineering Thermodynamics
  • Çengel & Boles, Thermodynamics: An Engineering Approach
  • Smith, Van Ness & Abbott, Introduction to Chemical Engineering Thermodynamics
  • Atkins & de Paula, Physical Chemistry