Psychrometrics

Concept

Psychrometrics — Thermodynamics of Moist Air (First Principles + Engineering Correlations)

Scope: rigorous derivation and engineering implementation of moist-air thermodynamics. Includes both first-principles molecular reasoning and practical ASHRAE-style correlations. Covers ideal and non-ideal moist air, humidity and enthalpy relations, psychrometric chart derivation, adiabatic saturation, condensation, and evaporative processes.


1. Definition of Moist Air

Moist air is a binary mixture of dry air (a mixture of N₂, O₂, Ar, CO₂) and water vapor, often approximated as a mixture of two perfect gases.

At total pressure PP: P=Pa+PvP = P_a + P_v where PaP_a is the partial pressure of dry air, PvP_v that of water vapor.

Mass basis:

  • Mass of dry air: mam_a
  • Mass of water vapor: mvm_v
  • Humidity ratio (specific humidity): w=mvma=0.622PvPPvw = \frac{m_v}{m_a} = 0.622 \frac{P_v}{P - P_v}

This follows from the ideal gas law and molecular-weight ratio Mv/Ma=18.016/28.97=0.622M_v/M_a = 18.016/28.97 = 0.622.


2. Thermodynamic Foundation (Chemical Potential Equality)

At equilibrium between vapor and liquid water: μv(T,Pv)=μl(T,P)\mu_v(T,P_v) = \mu_l(T,P)

Using differential dμ=sdT+vdPd\mu = -s\,dT + v\,dP: integrate at constant T to yield the Clausius–Clapeyron relation for saturation vapor pressure: dPsatdT=hfgT(vgvf).\frac{dP_{sat}}{dT} = \frac{h_{fg}}{T (v_g - v_f)}.

Assuming vgvfv_g \gg v_f and vapor ideal: dlnPsatdT=hfgRvT2.\frac{d\ln P_{sat}}{dT} = \frac{h_{fg}}{R_v T^2}. Integration gives the exponential form used in Antoine and related equations.


3. Saturation Pressure Correlations

3.1 Antoine Equation (Empirical)

log10Psat=ABT+C\log_{10} P_{sat} = A - \frac{B}{T + C} Typical constants (water, 1–100 °C): A=8.07131,B=1730.63,C=233.426A = 8.07131, B = 1730.63, C = 233.426.

3.2 Goff–Gratch (Internationally accepted for precise work):

log10(PsatPc)=7.90298(TcT1)+5.02808log10(TcT)1.3816×107(1011.344(1T/Tc)1)+8.1328×103(103.49149(Tc/T1)1).\log_{10}\left(\frac{P_{sat}}{P_c}\right) = -7.90298\left(\frac{T_c}{T}-1\right)+5.02808\log_{10}\left(\frac{T_c}{T}\right) -1.3816\times10^{-7}(10^{11.344(1-T/T_c)}-1)+8.1328\times10^{-3}(10^{-3.49149(T_c/T-1)}-1).

3.3 Hyland–Wexler Formulation (ASHRAE standard)

Used in high-accuracy psychrometrics; polynomial-log fit for Psat(T)P_{sat}(T) up to 200 °C.


4. Moist-Air Thermodynamic Properties

4.1 Specific Humidity and Relative Humidity

w=0.622PvPPv,ϕ=PvPsat(T).w = 0.622 \frac{P_v}{P - P_v}, \qquad \phi = \frac{P_v}{P_{sat}(T)}.

Given T,P,ϕT, P, \phi: Pv=ϕPsat(T)P_v = \phi P_{sat}(T), hence w follows directly.

4.2 Dew-Point Temperature

Dew point TdpT_{dp} satisfies Pv=Psat(Tdp)P_v = P_{sat}(T_{dp}). Numerically, invert Psat(T)P_{sat}(T) correlation.

Approximate closed form (Magnus–Tetens): Tdp=bγ(T,ϕ)aγ(T,ϕ),γ(T,ϕ)=aTb+T+lnϕ,  a=17.27,b=237.7 °C.T_{dp} = \frac{b\,\gamma(T,\phi)}{a - \gamma(T,\phi)}, \qquad \gamma(T,\phi) = \frac{a T}{b+T} + \ln \phi, \; a=17.27, b=237.7~°C.

4.3 Enthalpy of Moist Air

Neglecting non-idealities: h=ha+whv=cp,aT+w(hg(T)+cp,vT)(1.005T+w(2501+1.88T)) [kJ/kg dry air].h = h_a + w h_v = c_{p,a} T + w (h_{g}(T) + c_{p,v} T) \approx (1.005 T + w (2501 + 1.88 T))~[\text{kJ/kg dry air}]. Reference: liquid water at 0 °C has h = 0.

4.4 Entropy of Moist Air

Using mixture formulation: s=sa+wsv=cp,alnTT0RalnPaPa,0+w[cp,vlnTT0RvlnPvPv,0+sfg,0].s = s_a + w s_v = c_{p,a}\ln\frac{T}{T_0} - R_a \ln\frac{P_a}{P_{a,0}} + w\left[c_{p,v}\ln\frac{T}{T_0} - R_v\ln\frac{P_v}{P_{v,0}} + s_{fg,0}\right].

4.5 Density of Moist Air

ρ=PaRaT+PvRvT=PRaT(1+1.607w).\rho = \frac{P_a}{R_a T} + \frac{P_v}{R_v T} = \frac{P}{R_a T (1 + 1.607 w)}. This expression shows vapor makes moist air less dense.


5. Adiabatic Saturation and Wet-Bulb Temperature

Adiabatic saturation: steady-flow process where unsaturated air contacts liquid water adiabatically. h1=h2,w2=wsat(T2).h_1 = h_2, \qquad w_2 = w_{sat}(T_2).

Define wet-bulb temperature TwT_w satisfying equality of enthalpy between given state and saturated state at TwT_w: h(T,w)=h(Tw,wsat(Tw)).h(T, w) = h(T_w, w_{sat}(T_w)). Numerical iteration gives TwT_w. For engineering use, Stull (2011) correlation: Tw=Tarctan(0.151977(ϕ+8.313659)1/2)+arctan(T+ϕ)arctan(ϕ1.676331)+0.00391838ϕ3/2arctan(0.023101ϕ)4.686035.T_w = T \arctan(0.151977(\phi + 8.313659)^{1/2}) + \arctan(T + \phi) - \arctan(\phi - 1.676331) + 0.00391838 \phi^{3/2}\arctan(0.023101\phi) - 4.686035.


6. Non-Ideal and High-Pressure Corrections

At elevated pressures (>200 kPa) or near condensation:

  • Replace ideal gas with virial correction: Z=1+B(T)/v+Z = 1 + B(T)/v + \ldots
  • Correct humidity ratio: w=0.622ϕPsat(T)exp(Vl(PPsat)/(RvT))PϕPsat(T)exp(Vl(PPsat)/(RvT)).w = 0.622 \frac{\phi P_{sat}(T)\exp(V_l(P-P_{sat})/(R_v T))}{P - \phi P_{sat}(T)\exp(V_l(P-P_{sat})/(R_v T))}.
  • Use fugacity coefficient from real-gas EOS for accurate condensation prediction.

7. Psychrometric Chart Equations

7.1 Axes and Primary Relations

Axes: dry-bulb temperature T (x-axis) vs. humidity ratio w (y-axis). For each T: Pv=ϕPsat(T),w=0.622Pv/(PPv).P_v = \phi P_{sat}(T), \quad w = 0.622 P_v/(P-P_v).

7.2 Constant Enthalpy (Adiabatic Mixing) Lines

From h=1.005T+w(2501+1.88T)h = 1.005 T + w(2501 + 1.88 T), constant h ⇒ linear relation: w=h1.005T2501+1.88T.w = \frac{h - 1.005 T}{2501 + 1.88 T}. Lines slope downward slightly with T.

7.3 Constant Relative Humidity Lines

For given ϕ\phi, use saturation correlation to compute w(T,ϕ)w(T,\phi). Plot by looping T and computing w=0.622ϕPsat(T)/(PϕPsat(T))w=0.622\phi P_{sat}(T)/(P-\phi P_{sat}(T)).

7.4 Constant Wet-Bulb Lines

From enthalpy constancy between (T,w)(T, w) and (Tw,wsat(Tw))(T_w, w_{sat}(T_w)), solve for w(T,Tw)w(T, T_w). These lines approach the saturation curve as ϕ1\phi \to 1.

7.5 Constant Specific Volume

Using v=RT(1+1.607w)/Pv = RT(1+1.607 w)/P. Constant-v lines are slightly curved on the chart.


8. Mixing, Heating, and Cooling Processes

8.1 Adiabatic Mixing of Two Air Streams

Mass and energy balance per kg dry air: w3=m˙1w1+m˙2w2m˙1+m˙2,h3=m˙1h1+m˙2h2m˙1+m˙2.w_3 = \frac{\dot m_1 w_1 + \dot m_2 w_2}{\dot m_1 + \dot m_2}, \qquad h_3 = \frac{\dot m_1 h_1 + \dot m_2 h_2}{\dot m_1 + \dot m_2}. Intersection of lines on psychrometric chart gives state 3.

8.2 Sensible Heating/Cooling

Change T, constant w: Δh=cp,maΔT,  cp,ma=1.005+1.88w.\Delta h = c_{p,ma} \Delta T, \; c_{p,ma} = 1.005 + 1.88 w.

8.3 Evaporative Cooling (Adiabatic Humidification)

Adiabatic → constant h; water evaporates, T decreases, w increases until saturation or device limit.

8.4 Dehumidification and Cooling Below Dew Point

If T<TdpT < T_{dp}, condensation occurs. Latent heat removal =hfgΔw= h_{fg}\,\Delta w.


9. Condensation and Supersaturation (Thermodynamic Description)

At onset of condensation: μv=μl\mu_v = \mu_l. Supersaturated vapor has μv>μl\mu_v > \mu_l; condensation rate exp(ΔG/kT)\propto \exp(-\Delta G^*/kT), where ΔG\Delta G^* is nucleation barrier depending on surface tension and supersaturation ratio S=Pv/PsatS = P_v/P_{sat}.

Kelvin equation (curvature effect): lnPvPsat=2σvlRvTr.\ln \frac{P_v}{P_{sat}} = \frac{2\sigma v_l}{R_v T r}. Small droplets require higher vapor pressure to be stable.


10. Computational Implementation (Engineering Use)

10.1 Input Variables

Given any two independent variables among {T,ϕ,w,h,Tw,TdpT, \phi, w, h, T_w, T_{dp}}, the remaining can be computed using iterative evaluation of:

  1. Psat(T)P_{sat}(T) via correlation.
  2. Pv=ϕPsat(T)P_v = \phi P_{sat}(T).
  3. w=0.622Pv/(PPv)w = 0.622 P_v/(P - P_v).
  4. h=1.005T+w(2501+1.88T)h = 1.005 T + w (2501 + 1.88 T).

10.2 Example Calculation

At T = 30 °C, ϕ=0.6\phi = 0.6, P = 101.325 kPa:

  • Psat=4.247 kPaP_{sat}=4.247~kPa
  • Pv=2.548 kPaP_v=2.548~kPa
  • w=0.622×2.548/(101.3252.548)=0.0159 kg/kgw=0.622 \times 2.548/(101.325−2.548)=0.0159~kg/kg
  • h=1.005×30+0.0159(2501+1.88×30)=72.6 kJ/kg dry air.h=1.005 \times 30+0.0159(2501+1.88 \times 30)=72.6~kJ/kg \text{ dry air}.

11. Non-Equilibrium Moisture and Hygroscopic Materials

For porous solids, sorption isotherm relates equilibrium moisture content XeqX_{eq} to ϕ\phi: Xeq=Xs(aϕ)/(1(1a)ϕ),0<a<1.X_{eq} = X_s (a \phi)/(1 - (1 - a) \phi), \quad 0<a<1. Desorption/adsorption hysteresis arises from pore morphology. Moisture diffusion follows Fick’s law with D(ϕ,T)D(\phi,T). Nonequilibrium surfaces: mass-transfer rate m˙=hmA(ρv,ρv,s)\dot m = h_m A (\rho_{v,\infty} - \rho_{v,s}).

Coupling with energy balance gives simultaneous heat–mass transfer model used in drying and evaporative coolers.


12. Summary Equations

PropertySymbolEquation (SI units)
Humidity ratiow0.622Pv/(PPv)0.622 P_v/(P-P_v)
Relative humidityϕ\phiPv/Psat(T)P_v/P_{sat}(T)
Enthalpyh1.005T+w(2501+1.88T)1.005 T + w(2501 + 1.88 T) kJ/kg dry air
Densityρ\rhoP/[RaT(1+1.607w)]P/[R_a T(1+1.607w)]
Wet-bulb (enthalpy const.)h(T,w) = h(T_w,w_{sat}(T_w))
Dew pointPsat(Tdp)=PvP_{sat}(T_{dp})=P_v
Adiabatic mixingmass and energy balances for h and w
Saturation correlationAntoine/Goff–Gratch/Hyland–Wexler

  • See mixtures-phases.md for molecular mixture foundations.
  • See Fluid_Dynamics/07_Convective_Mass_Transfer.md for detailed derivations of evaporation and diffusion.
  • See HVAC_Applications/00_Psychrometric_Calculations.jl for code-level implementation in Julia.