Mixtures Phases

Concept

Mixtures and Phases — Molecular Foundations to Engineering Models (Nonreactive, Reactive, and Electrolytes)

Scope: first-principles derivations for mixtures. Unifies macroscopic thermodynamics, statistical mechanics, and chemical-engineering practice. Covers partial molar properties, Gibbs–Duhem, entropy of mixing, VLE/LLE/SLE criteria, γ–φ and φ–φ methods, EOS mixing rules, reactive equilibria and reactive flash, and electrolyte solution theory (Debye–Hückel and Pitzer). Includes algorithms and worked templates.


1. Preliminaries and Notation

  • Components i=1Ni = 1…N, moles nin_i, total n=inin = \sum_i n_i, mole fractions yiy_i (vapor), xix_i (liquid), ziz_i (feed).
  • Chemical potential: μi(T,P,{nj})\mu_i(T,P,\{n_j\}). For pure species at (T,P)(T,P): μi=gˉi=molar Gibbs free energy\mu_i = \bar{g}_i = \text{molar Gibbs free energy}.
  • Differential of GG for a closed, multicomponent, simple-compressible system: dG=SdT+VdP+iμidni.dG = -S\,dT + V\,dP + \sum_i \mu_i\,dn_i. Thus μi=(G/ni)T,P,nji.\mu_i = (\partial G/\partial n_i)_{T,P,n_{j\ne i}}.
  • Partial molar property Mi=((nM)/ni)T,P,nji.\overline{M}_i = (\partial (nM)/\partial n_i)_{T,P,n_{j\ne i}}.

Gibbs–Duhem: at constant T,P, inidμi=0\sum_i n_i d\mu_i = 0 or in mole-fraction form ixidμi=0. \sum_i x_i d\mu_i = 0.


2. Statistical Basis of Mixture Entropy and μi\mu_i

2.1 Entropy of Mixing from Microstates

Microcanonical counting for two ideal gases A,B initially separated then mixed at identical T,P: ΔSmix=Rinilnxi.\Delta S_{mix} = -R \sum_i n_i \ln x_i. Origin: indistinguishability and combinatorics (lnN!\ln N! via Stirling’s approximation). Removes Gibbs paradox.

2.2 Canonical Derivation of μi\mu_i

For mixture partition function Z=(iZiNi/Ni!)ZconfZ = (\prod_i Z_i^{N_i}/N_i!) Z_{conf}. Helmholtz energy A=kBTlnZA=-k_B T\ln Z. Then at fixed T,V,N_j: μi=(ANi)T,V,Nji.\mu_i = \left(\frac{\partial A}{\partial N_i}\right)_{T,V,N_{j\ne i}}. For ideal gas mixture with no configurational interactions: μiig(T,P,yi)=μi(T)+RTln(yiP/P).\mu_i^{ig}(T,P,y_i) = \mu_i^{\circ}(T) + RT\ln(y_i P/P^\circ).

2.3 Excess Properties

Define excess relative to ideal mixture at same T,P,x: ME=MMid.M^E = M - M^{id}. Then GEG^E encodes nonideality; activity coefficients follow: lnγi=((GE/RT)/ni)T,P,nji.\ln \gamma_i = (\partial (G^E/RT)/\partial n_i)_{T,P,n_{j\ne i}}.


3. Phase Equilibrium Criteria and Working Forms

3.1 Fundamental Conditions

At fixed T,P: equality of chemical potentials of each component across phases α,β\alpha,\beta: μi(α)(T,P,{xj(α)})=μi(β)(T,P,{xj(β)}).\mu_i^{(\alpha)}(T,P,\{x_j^{(\alpha)}\}) = \mu_i^{(\beta)}(T,P,\{x_j^{(\beta)}\}).

3.2 Fugacity and Activity

  • Fugacity of component i in phase ϕ\phi: fi(ϕ)f_i^{(\phi)}. For a pure fluid: μ=μig(T,P)+RTln(f/P).\mu = \mu^{ig}(T,P) + RT\ln(f/P).
  • In mixtures: μi=μiig(T,P,yi)+RTlnϕi\mu_i = \mu_i^{ig}(T,P,y_i) + RT\ln \phi_i with fugacity coefficient ϕi\phi_i from an EOS; or μi=μi(T,P)+RTlnai\mu_i = \mu_i^{\circ}(T,P) + RT\ln a_i with activity ai=γixia_i = \gamma_i x_i in liquids.

3.3 γ\gammaϕ\phi Formulation for VLE

At equilibrium between liquid L and vapor V for each i: fi(L)=fi(V)γixifi(T,P)=yiϕiP.f_i^{(L)} = f_i^{(V)} \Rightarrow \gamma_i x_i f_i^{\circ}(T,P) = y_i \phi_i P. Choose standard state so that fif_i^{\circ} is convenient:

  • Lewis–Randall (ideal solution): fi=fipure(T,P)ai=xi.f_i^{\circ} = f_i^{pure}(T,P)\Rightarrow a_i=x_i.
  • Raoult (solvent at low P): fi=Pisat(T)yiP=xiγiPisatϕi.f_i^{\circ} = P_i^{sat}(T)\Rightarrow y_i P = x_i \gamma_i P_i^{sat}\phi_i.
  • Henry (dilute solute): fi=Hi(T)yiP=xiγiHi.f_i^{\circ} = H_i(T)\Rightarrow y_i P = x_i \gamma_i H_i.

3.4 ϕ\phiϕ\phi with a Single EOS

Use a cubic EOS for both phases. Compute ϕi(L),ϕi(V)\phi_i^{(L)}, \phi_i^{(V)} via mixing rules. Solve yiϕi(V)P=xiϕi(L)P.y_i \phi_i^{(V)} P = x_i \phi_i^{(L)} P.


4. Activity–Coefficient Models (GEG^E Models)

  • Margules/Van Laar/Wilson: closed forms for GE/RTG^E/RTlnγi\ln \gamma_i.
  • NRTL: captures nonrandomness with parameter α\alpha; widely used for nonelectrolytes and some associating systems.
  • UNIQUAC: separates combinatorial and residual contributions using surface-area and volume parameters.
  • UNIFAC: group-contribution variant of UNIQUAC.

Relation to excess Gibbs: GE=RTixilnγiG^E = RT \sum_i x_i \ln \gamma_i. Consistency with Gibbs–Duhem must hold.


5. EOS Mixing and Combining Rules

For cubic EOS with mixture parameters a(T),ba(T), b: a=ijxixjaij,aij=(1kij)aiaj,b=ixibi.a = \sum_i\sum_j x_i x_j a_{ij},\quad a_{ij} = (1-k_{ij})\sqrt{a_i a_j},\quad b = \sum_i x_i b_i. Two-parameter (vdW-1f) rules above; alternatives include Huron–Vidal and Wong–Sandler, which match excess-Gibbs behavior at infinite pressure to couple EOS with GEG^E models.

Fugacity coefficients from EOS: lnϕi=0P(vˉiRT1P)dP+EOS-specific terms.\ln \phi_i = \int_0^P \left(\frac{\bar v_i}{RT} - \frac{1}{P'}\right) dP' + \text{EOS-specific terms}. Closed forms exist for Peng–Robinson and SRK.


6. Flash and Phase-Split Calculations

6.1 Isothermal–Isobaric VLE Flash (Two Phases)

Unknowns: β\beta (vapor fraction), xi,yix_i, y_i. Define Ki=yi/xiK_i = y_i/x_i. Overall balance and Rachford–Rice: izi(Ki1)1+β(Ki1)=0.\sum_i \frac{z_i (K_i-1)}{1 + \beta (K_i-1)} = 0. Given T,P: compute K_i from EOS (φ–φ) or from γ\gammaϕ\phi with Ki=γifiϕiP.K_i = \frac{\gamma_i f_i^{\circ}}{\phi_i P}.

6.2 Multiphase and LLE

Extend with stability analysis (tangent plane distance). Solve for multiple β(α)\beta^{(\alpha)} and compositions that minimize G at fixed T,P,n.


7. Reactive Mixtures

7.1 Equilibrium Conditions

For reactions r=1Rr = 1…R with stoichiometric matrix νir\nu_{ir} (positive for products): chemical equilibrium at T,P minimizes G subject to element balances, or equivalently sets affinity to zero: Ar=iνirμi=0.\mathcal A_r = -\sum_i \nu_{ir} \mu_i = 0.

7.2 Equilibrium Constants and Activities

Standard state definition gives ΔrG(T)=RTlnKr(T).\Delta_r G^{\circ}(T) = -RT \ln K_r(T). For ideal gases: Kp=i(yiP/P)νir.K_p = \prod_i (y_i P/P^{\circ})^{\nu_{ir}}. For real systems, replace with activities or fugacities: K=iaiνir=i(ϕiyiP/P)νir (gas),ai=γixi (liquid).K = \prod_i a_i^{\nu_{ir}} = \prod_i (\phi_i y_i P/P^{\circ})^{\nu_{ir}} \text{ (gas)},\quad a_i = \gamma_i x_i \text{ (liquid)}.

7.3 Extent of Reaction Formulation

Let ξr\xi_r be extents. Species moles ni=ni0+rνirξr.n_i = n_i^0 + \sum_r \nu_{ir} \xi_r. Minimize G(T,P,{ni})G(T,P,\{n_i\}) with respect to ξr\xi_r under bounds; or solve equilibrium conditions Ar=0\mathcal A_r=0 with activities. Newton–Raphson on ξ\xi is standard.

7.4 Reactive Flash

Combine Rachford–Rice with reaction stoichiometry. Unknowns: β,xi,yi,{ξr}.\beta, x_i, y_i, \{\xi_r\}. Solve nested: outer loop on β\beta and ξ\xi, inner on phase composition with KiK_i that depend on activities of updated compositions.


8. Electrolyte and Ionic Solution Theory

8.1 Electrochemical Potential and Electroneutrality

For ion ii with charge ziz_i: μ~i=μi+ziFΦ,\tilde\mu_i = \mu_i + z_i F \Phi, where Φ\Phi is the electric potential and F is Faraday’s constant. Only differences in electrochemical potential are measurable. Macroscopic solutions satisfy electroneutrality: izimi=0\sum_i z_i m_i = 0 for molalities mim_i.

8.2 Activities and Mean Ionic Activity Coefficient

Define mean ionic quantity for electrolyte Aν+BνA_{\nu_+} B_{\nu_-}: a±=(a+ν+aν)1/(ν++ν),γ±=(γ+ν+γν)1/(ν++ν).a_{\pm} = (a_+^{\nu_+} a_-^{\nu_-})^{1/(\nu_++\nu_-)}, \quad \gamma_{\pm} = (\gamma_+^{\nu_+} \gamma_-^{\nu_-})^{1/(\nu_++\nu_-)}. Chemical equilibria use activities ai=γimia_i = \gamma_i m_i (molality standard) or γixi\gamma_i x_i (mole fraction standard).

8.3 Debye–Hückel Theory (Dilute Limit)

Ionic atmosphere yields log10γi=Azi2I1+BaiI,I=12jzj2mj.\log_{10} \gamma_i = -\frac{A z_i^2 \sqrt{I}}{1 + B a_i \sqrt{I}}, \quad I = \tfrac{1}{2} \sum_j z_j^2 m_j. AA and BB depend on T and solvent dielectric/ density; aia_i is an ion-size parameter. Limiting law for very dilute: log10γi=Azi2I.\log_{10} \gamma_i = -A z_i^2 \sqrt{I}.

8.4 Extended Debye–Hückel and Davies

For moderate II, use extended forms or Davies equation: log10γi=Azi2[I1+I0.3I].\log_{10} \gamma_i = -A z_i^2 \left[ \frac{\sqrt{I}}{1+\sqrt{I}} - 0.3 I \right].

8.5 Pitzer Equations (High Ionic Strength)

Excess Gibbs energy expressed via virial-like terms in molality with binary and ternary interaction parameters (β(0),β(1),Cϕ\beta^{(0)}, \beta^{(1)}, C^\phi). Provides ϕ\phi (osmotic coefficient) and γ±\gamma_\pm: GE/(RT)=i,jmimjfij(I)+i,j,kmimjmkgijk(I).G^E/(RT) = \sum_{i,j} m_i m_j f_{ij}(I) + \sum_{i,j,k} m_i m_j m_k g_{ijk}(I). Differentiation gives activity coefficients and osmotic coefficients consistent with Gibbs–Duhem and electroneutrality. Calibrate to osmotic and EMF data.

8.6 Speciation, Acid–Base, and Complexation

Mass-action with activities: K(T)=iaiνir.K(T) = \prod_i a_i^{\nu_{ir}}. Solve coupled equilibrium and electroneutrality for species including water autoionization, acid–base pairs, and complexes. Ionic strength appears in γi\gamma_i. Use Newton iterations on logarithms of primary variables (e.g., pH, log mim_i).

8.7 Osmotic Pressure and Water Activity

From ϕ\phi and solvent chemical potential: μw=μw+RTlnaw\mu_w = \mu_w^\circ + RT\ln a_w. Osmotic pressure Π\Pi relates via: Π=(RT/vˉw)lnaw.\Pi = - (RT/\bar v_w) \ln a_w.

8.8 Transport Note

Electrical conductivity and diffusion follow from Nernst–Planck; thermodynamic factors come from activity-coefficient matrix Γij=lnai/lnmj\Gamma_{ij} = \partial \ln a_i / \partial \ln m_j.


9. Azeotropy and Phase Behavior

Azeotrope at T,P where yi=xiiy_i = x_i\,\forall i. For γ\gammaϕ\phi with Raoult standard: Ki=γiPisatϕiP.K_i = \frac{\gamma_i P_i^{sat}}{\phi_i P}. Criterion for binary minimum-boiling azeotrope at given P: d(lnK1)/dx1=d(lnK2)/dx1d(\ln K_1)/d x_1 = d(\ln K_2)/d x_1 at x1=x1azx_1=x_1^{az}; equivalent tangent-plane degeneracy in GEG^E. For LLE, use equality of tangent planes to GEG^E surface.


10. Algorithms and Numerical Templates

10.1 γ\gammaϕ\phi Isothermal Flash (Two Phases)

  1. Guess β\beta. 2) Compute KiK_i using current xx via model: γ(x,T)\gamma(x,T), ϕ(T,P,y)\phi(T,P,y). 3) Solve Rachford–Rice for β\beta. 4) Update x,yx,y. 5) Iterate to convergence; enforce nonnegativity and xi=yi=1\sum x_i=\sum y_i=1.

10.2 ϕ\phiϕ\phi with Cubic EOS

  1. Stability test via tangent-plane distance. 2) If split, initialize compositions from Wilson KiK_i. 3) Solve equality of component fugacities with EOS fugacity coefficients and mixing rules. 4) Update phase fractions.

10.3 Reactive Flash

Minimize G(T,P)G(T,P) with variables (β,compositions,ξr)(\beta, \text{compositions}, \xi_r). Alternative: nested loop. Use element conservation matrix AA (elements × species) to reduce variables. Apply line search on ξ\xi to keep ni0n_i \ge 0.

10.4 Electrolyte Speciation + VLE/LLE

Loop: given T,P, total analytical concentrations, solve speciation with activity model (DH/Pitzer). Then compute phase split using effective activities/fugacities. Iterate until consistency between speciation and phase equilibrium.


11. Worked Examples (Symbolic Templates)

  1. Binary VLE with NRTL at fixed T,P: derive lnγi\ln \gamma_i. Compute KiK_i and solve RR for β\beta. Plot y–x and T–x if sweeping T.
  2. EOS ϕ\phiϕ\phi flash for PR: compute a,ba,b via mixing rules, solve cubic for compressibility factors Z(L),Z(V)Z^{(L)}, Z^{(V)}, then lnϕi(ϕ)\ln \phi_i^{(\phi)}, iterate on compositions.
  3. Reactive equilibrium A+BCA + B \rightleftharpoons C at T,P with nonideality: write Gibbs, K(T)K(T), express activities using γ(x)\gamma(x) or ϕ(y)\phi(y). Solve for ξ\xi.
  4. Electrolyte: aqueous NaCl at 25 °C. Compute I,γ±I, \gamma_\pm via extended Debye–Hückel. Compare to Pitzer at molalities up to 6 m. Derive osmotic coefficient and water activity.

12. Summary Equations

  • Gibbs–Duhem: xidμi=0\sum x_i d\mu_i = 0.
  • μ\mu and activities: μi=μi+RTlnai\mu_i = \mu_i^{\circ} + RT\ln a_i.
  • VLE γ\gammaϕ\phi: γixifi=yiϕiP\gamma_i x_i f_i^{\circ} = y_i \phi_i P.
  • Rachford–Rice: zi(Ki1)/(1+β(Ki1))=0\sum z_i (K_i-1)/(1+\beta(K_i-1)) = 0.
  • Reaction: ΔrG=RTlnK\Delta_r G^{\circ} = -RT\ln K; A=νiμi=0\mathcal A = -\sum \nu_i \mu_i = 0 at equilibrium.
  • Debye–Hückel: log10γi=Azi2I/(1+BaiI)\log_{10} \gamma_i = -A z_i^2 \sqrt{I}/(1+B a_i \sqrt{I}).
  • Pitzer: osmotic and activity via binary/ternary interaction terms in molality.

  • See pure-substances.md for EoS fundamentals and residual functions.
  • See second-law.md for stability and Legendre transforms.
  • Upcoming chemical-thermodynamics.md will expand electrolyte models and transport.