Entropy Exergy
ConceptExergy and Irreversibility — From First and Second Laws to Available Work
Scope: rigorous thermodynamic treatment of exergy, entropy generation, and irreversibility for closed and open systems. Derived from first principles and extended to engineering formulations for real processes. Includes physical, chemical, kinetic, and potential exergy; Gouy–Stodola theorem; and second-law efficiency.
1. Concept and Motivation
Energy is conserved (First Law) but not all energy is equally useful. The Second Law limits the fraction of energy that can be converted into work. Exergy quantifies the maximum useful work obtainable as a system comes to equilibrium with a specified reference environment.
When a system interacts only with this environment (, composition {x_0}), the process that ends in total equilibrium is the dead state. At this state: no temperature, pressure, or chemical potential gradients exist, and no further work can be extracted.
2. Definition of Exergy (Availability)
Consider a system exchanging heat , work , and mass flow with its surroundings. The specific exergy (per unit mass) is defined as:
This expression represents the maximum useful work obtainable when the system moves reversibly to the dead state while interacting only with the environment.
The exergy combines energy (), entropy (), and environment properties (), unifying the first and second laws into a single potential for work.
3. Types of Exergy
| Type | Definition | Mechanism of Destruction |
|---|---|---|
| Physical exergy | Thermal and mechanical irreversibilities | |
| Chemical exergy | Associated with departure from environmental chemical composition | Chemical reaction irreversibility |
| Kinetic exergy | Viscous dissipation | |
| Potential exergy | Frictional losses | |
| Mixing exergy | Available work from concentration differences | Diffusion/mixing entropy |
Total exergy per unit mass:
4. Exergy Balance for a Closed System
First law: Second law: Multiply by and combine:
Define exergy transfer with heat at boundary temperature T as:
Integrating for a process from 1→2: where is total exergy. Thus:
5. Exergy Balance for Open Systems
Steady-state control volume with mass flow: Apply the same transformation with : where is exergy destruction rate.
In expanded form:
6. Gouy–Stodola Theorem
The lost work (irreversibility) of any process is proportional to entropy generation: Thus exergy destruction quantifies thermodynamic inefficiency:
Interpretation:
- Entropy generation measures disorder creation.
- Exergy destruction measures loss of available work due to that disorder.
7. Exergy Transfer with Heat and Work
| Interaction | Exergy Rate | Comment |
|---|---|---|
| Heat transfer | Only part of heat is convertible | |
| Work | All work is exergy (if frictionless) | |
| Shaft work | Purely mechanical | |
| Electrical | Entirely available |
8. Chemical Exergy
For a substance at : The chemical exergy of elements in their environmental form (e.g., O₂, N₂, H₂O(l), CO₂(g)) is defined as zero.
For compounds, tabulated chemical exergy values approximate:
Mixture exergy includes additional mixing term:
9. Irreversibility and Entropy Generation Sources
| Source | Mechanism | Relation to S_gen |
|---|---|---|
| Heat transfer through finite | Nonisothermal conduction/convection | |
| Friction and viscous dissipation | Conversion of mechanical energy to heat | |
| Expansion/compression through finite | Non-quasi-static flow work | Entropy production in throttling |
| Mixing of different compositions | Molecular diffusion | |
| Chemical reactions | Departure from equilibrium |
10. Second-Law (Exergy) Efficiency
Define second-law efficiency (rational efficiency):
10.1 Closed System Example
For a heat engine:
10.2 Component-Level Efficiencies
| Device | Exergy Efficiency | Comment |
|---|---|---|
| Turbine | Measures internal irreversibility | |
| Compressor | Based on reversible outlet state | |
| Heat exchanger | Coupled with temperature gradient losses |
11. Exergy of Flow Systems and Cycles
For steady-flow devices, define specific flow exergy:
11.1 Steam Turbine Example
Calculate irreversibility:
11.2 Rankine Cycle Exergy Balance
This reflects both thermal and mechanical losses.
12. Reversible Work and Maximum Work Concepts
Maximum useful work from a closed system between states 1 and 2: For open steady-flow:
Any deviation introduces entropy generation:
13. Statistical and Information-Theoretic Interpretation
Entropy generation corresponds to information loss about microstates. In information theory, ; irreversible processes increase (number of accessible microstates). The exergy destroyed corresponds to the energy associated with this loss of information: This bridges thermodynamics with statistical mechanics and computation limits (Landauer principle).
14. Summary of Key Relations
| Relation | Expression |
|---|---|
| Specific exergy | |
| Exergy balance | |
| Gouy–Stodola | |
| Physical exergy | |
| Chemical exergy | |
| Flow exergy | |
| Second-law efficiency | |
| Irreversibility |
15. Cross-Links
- second-law.md — entropy generation and reversible processes.
- mixtures-phases.md — chemical potential and reaction equilibrium for chemical exergy.
- Fluid_Dynamics/08_Irreversible_Flows.md — viscous dissipation and entropy transport.