Tensor Analysis

Concept

Tensor Analysis - Tensors, Calculus, and Applications

Table of Contents

  1. Introduction to Tensors
  2. Tensor Algebra
  3. Tensor Calculus
  4. Covariant Derivative
  5. Riemannian Geometry
  6. Applications in Physics
  7. Tensor Fields

Introduction to Tensors

Motivation

Tensors generalize scalars, vectors, and matrices to higher dimensions

Coordinate-independent objects representing physical quantities

Transformation rules under coordinate changes

Tensor as Multilinear Map

Type (p,q)(p,q) tensor TT: Maps pp covectors and qq vectors to R\mathbb{R}

Contravariant order: pp Covariant order: qq

Examples:

  • Scalar (0,0): Real number
  • Vector (1,0): Maps covector to number
  • Linear form (0,1): Maps vector to number (covector)
  • Linear map (1,1): Matrix (rank 2)

Metric tensor (0,2): Inner product

Component Form

In coordinates {x^\mu}:

T=Tν1νqμ1μpxμ1xμpdxν1dxνqT = T^{\mu_1 \dots \mu_p}_{{\nu_1 \dots \nu_q}} \frac{\partial}{\partial x^{\mu_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{\mu_p}} \otimes dx^{\nu_1} \otimes \dots \otimes dx^{\nu_q}

Summation convention: Repeated indices summed

TνμT^{\mu …}_{{\nu …}}: Components in coordinate system

Transformation Rules

Under coordinate change xμxαx^\mu \to x'^\alpha:

Contravariant (upper indices): Tα1αp=xα1xμ1xαpxμpTμ1μpT'^{\alpha_1 \dots \alpha_p} = \frac{\partial x'^{\alpha_1}}{\partial x^{\mu_1}} \dots \frac{\partial x'^{\alpha_p}}{\partial x^{\mu_p}} T^{\mu_1 \dots \mu_p}

Covariant (lower indices): Tβ1βq=xν1xβ1xνqxβqTν1νqT'_{\beta_1 \dots \beta_q} = \frac{\partial x^{\nu_1}}{\partial x'^{\beta_1}} \dots \frac{\partial x^{\nu_q}}{\partial x'^{\beta_q}} T_{\nu_1 \dots \nu_q}

Mixed tensor: Mixed product of transformations


Tensor Algebra

Tensor Product

uvu \otimes v: Outer product

Components: (uv)μν=uμvν(u \otimes v)^{\mu\nu} = u^\mu v^\nu

Properties:

  • Not commutative: uvvuu \otimes v \neq v \otimes u generally
  • Associative: (uv)w=u(vw)(u \otimes v) \otimes w = u \otimes (v \otimes w)
  • Distributive: u(v+w)=uv+uwu \otimes (v + w) = u \otimes v + u \otimes w

Contraction

Sum over one upper and one lower index

Example: TνμTμμT^\mu_\nu \to T^\mu_\mu (sum over μ\mu)

Decreases rank: (p,q)(p1,q1)(p,q) \to (p-1,q-1)

Raising/Lowering Indices

Metric tensor gμνg_{\mu\nu} (positive definite, symmetric)

Lower index: Tμ=gμνTνT_\mu = g_{\mu\nu} T^\nu

Raise index: Tμ=gμνTνT^\mu = g^{\mu\nu} T_\nu

where gμνg^{\mu\nu} inverse of gμνg_{\mu\nu}

gμρgρν=δνμg^{\mu\rho} g_{\rho\nu} = \delta^\mu_\nu

Symmetrization and Antisymmetrization

Symmetric part: T(μν)=12(Tμν+Tνμ)T_{(\mu\nu)} = \frac{1}{2}(T_{\mu\nu} + T_{\nu\mu})

Antisymmetric part: T[μν]=12(TμνTνμ)T_{[μν]} = \frac{1}{2}(T_{μν} - T_{νμ})

For p indices: T(μ1μp)=1p!σSpTμσ(1)μσ(p)T_{(\mu_1 \dots \mu_p)} = \frac{1}{p!} \sum_{\sigma \in S_p} T_{\mu_{\sigma(1)} \dots \mu_{\sigma(p)}}

TϵT_\epsilon-notation: ϵ\epsilon-antisymmetric

Levi-Civita Symbol

ϵμ1μn\epsilon^{\mu_1 \dots \mu_n}: Totally antisymmetric

ϵ12n=1\epsilon^{12 \dots n} = 1 (even permutation) ϵμ=1\epsilon^{\mu …} = -1 (odd permutation) ϵ=0\epsilon = 0 (repeated index)

ϵμ1μn=(1)P\epsilon^{\mu_1 \dots \mu_n} = (-1)^P where PP is permutation parity

Metric determinant connection: ϵμ1μn=(detg)1/2ϵ~μ1μn\epsilon^{\mu_1 \dots \mu_n} = (\det g)^{-1/2} \tilde{\epsilon}^{\mu_1 \dots \mu_n}


Tensor Calculus

Partial Derivative

μf=f/xμ\partial_\mu f = \partial f/\partial x^\mu

For vectors: μVν=Vν/xμ\partial_\mu V^\nu = \partial V^\nu/\partial x^\mu

Not a tensor! Transformation includes extra term

Reason: Vectors at different points live in different tangent spaces

Covariant Derivative

Correct derivative transforming as tensor

For vector field V: μVν=μVν+ΓρμνVρ\nabla_\mu V^\nu = \partial_\mu V^\nu + \Gamma^\nu_{\rho\mu} V^\rho

Christoffel symbols Γρμν\Gamma^\nu_{\rho\mu}: Connection coefficients

Determined by metric: Γνρμ=12gμσ(νgρσ+ρgνσσgνρ)\Gamma^\mu_{\nu\rho} = \frac{1}{2}g^{\mu\sigma}(\partial_\nu g_{\rho\sigma} + \partial_\rho g_{\nu\sigma} - \partial_\sigma g_{\nu\rho})

Covariant Derivative of Covector

μVν=μVνΓνμρVρ\nabla_\mu V_\nu = \partial_\mu V_\nu - \Gamma^\rho_{\nu\mu} V_\rho

More minus sign for lower indices

Covariant Derivative of General Tensor

μTν1νqμ1μp=μTν1νqμ1μp+i=1pΓρμμiTρj=1qΓνjμρTρ\nabla_\mu T^{\mu_1 \dots \mu_p}_{{\nu_1 \dots \nu_q}} = \partial_\mu T^{\mu_1 \dots \mu_p}_{{\nu_1 \dots \nu_q}} + \sum_{i=1}^{p} \Gamma^{\mu_i}_{{\rho\mu}} T^{\dots \rho \dots}_{{\dots}} - \sum_{j=1}^{q} \Gamma^{\rho}_{{\nu_j \mu}} T^{\dots}_{{\dots \rho \dots}}

One +Γ\Gamma for each upper index, one -Γ\Gamma for each lower index

Commutation

Second derivatives don’t commute:

[μ,ν]Vρ=RσμνρVσ[\nabla_\mu, \nabla_\nu] V^\rho = R^\rho_{\sigma\mu\nu} V^\sigma

Riemann tensor measures curvature


Covariant Derivative

Parallel Transport

Vector parallel transported if covariant derivative vanishes

Dependence on path in curved spaces

Geodesics: Shortest paths where tangent vector parallel transported along itself

Geodesic Equation

Minimizing action or parallel transport:

d2xμdλ2+Γνρμdxνdλdxρdλ=0\frac{d^2x^\mu}{d\lambda^2} + \Gamma^\mu_{\nu\rho} \frac{dx^\nu}{d\lambda} \frac{dx^\rho}{d\lambda} = 0

where λ\lambda is affine parameter

In flat space: Straight lines (Γ=0\Gamma = 0)

Parallel Vector Fields

Vector field V: μVν=0\nabla_\mu V^\nu = 0 everywhere

Impossible in general curved spaces (except on geodesics)


Riemannian Geometry

Metric Tensor

gμν(x)g_{\mu\nu}(x): Defines geometry locally

Riemannian metric: Positive definite

Lorentzian metric (relativity): Signature (+)(+---) or (+++)(-+++)

Line element: ds2=gμνdxμdxνds^2 = g_{\mu\nu} dx^\mu dx^\nu

Riemann Tensor

Measures curvature of manifold

Rσμνρ=μΓνσρνΓμσρ+ΓμλρΓνσλΓνλρΓμσλR^\rho_{\sigma\mu\nu} = \partial_\mu \Gamma^\rho_{\nu\sigma} - \partial_\nu \Gamma^\rho_{\mu\sigma} + \Gamma^\rho_{\mu\lambda} \Gamma^\lambda_{\nu\sigma} - \Gamma^\rho_{\nu\lambda} \Gamma^\lambda_{\mu\sigma}

Symmetries:

  • Rσμνρ=RσνμρR^\rho_{\sigma\mu\nu} = -R^\rho_{\sigma\nu\mu}
  • Rρσμν=RσρμνR_{\rho\sigma\mu\nu} = -R_{\sigma\rho\mu\nu}
  • Rρσμν=RμνρσR_{\rho\sigma\mu\nu} = R_{\mu\nu\rho\sigma}
  • Rρ[σμν]=0R_{\rho[\sigma\mu\nu]} = 0 (Bianchi identity)

Number of independent components: n2(n21)/12n^2(n^2-1)/12 in nn dimensions

For n=4n=4: 20 independent components

Ricci Tensor

Rμν=RμρνρR_{\mu\nu} = R^\rho_{\mu\rho\nu}

Symmetric: Rμν=RνμR_{\mu\nu} = R_{\nu\mu}

Trace of Riemann tensor

Scalar Curvature

R=gμνRμνR = g^{\mu\nu} R_{\mu\nu}

Single number characterizing curvature

Positive: Spherical Negative: Hyperbolic Zero: Flat

Einstein Equations

Relating geometry to matter:

Rμν12Rgμν=8πGTμνR_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}

TμνT_{\mu\nu}: Stress-energy tensor

In vacuum: Rμν=0R_{\mu\nu} = 0 (Ricci-flat)

Vacuum Einstein equations


Applications in Physics

Electromagnetism

Field strength tensor:

Fμν=μAννAμF_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu

Antisymmetric: Fμν=FνμF_{\mu\nu} = -F_{\nu\mu}

Maxwell equations in curved spacetime:

μFμν=Jν\nabla_\mu F^{\mu\nu} = J^\nu [ρFμν]=0\nabla_{[\rho} F_{\mu\nu]} = 0

General Relativity

Stress-energy tensor: TμνT_{\mu\nu}

Energy density: T00T_{00} Momentum density: T0iT_{0i} Stress tensor: TijT_{ij}

Conservation: μTμν=0\nabla_\mu T^{\mu\nu} = 0

Continuum Mechanics

Strain tensor: ϵij\epsilon_{ij}

Stress tensor: σij\sigma_{ij}

Hooke’s law: σij=Cijklϵkl\sigma_{ij} = C_{ijkl} \epsilon_{kl}

Elasticity tensor: CijklC_{ijkl} (symmetric under various index permutations)


Tensor Fields

Definitions

Tensor field: Tensor assignment to each point in space

Scalar field: Function

Vector field: Vμ(x)V^\mu(x)

Metric field: gμν(x)g_{\mu\nu}(x)

Tensor density: Tensors weighted by powers of metric determinant

Lie Derivative

Infinitesimal transformation along vector field

LXT=limϵ0T(ϕϵ(x))T(x)ϵL_X T = \lim_{\epsilon\to0} \frac{T(\phi_\epsilon(x)) - T(x)}{\epsilon}

where ϕϵ\phi_\epsilon is flow of XX

Measures change under infinitesimal diffeomorphism

Differential Forms

Antisymmetric covariant tensors

kk-form: Antisymmetric tensor of type (0,k)(0,k)

Exterior derivative dd: Maps kk-form to (k+1)(k+1)-form

d2=0d^2 = 0

Stokes’ Theorem: Mdω=Mω\int_M d\omega = \int_{\partial M} \omega

Hodge Star

Map between kk-forms and (nk)(n-k)-forms

Depends on orientation and metric

ω=1k!(nk)!ωμ1μkϵμ1μndxμk+1dxμn* \omega = \frac{1}{k!(n-k)!} \omega_{\mu_1 \dots \mu_k} \epsilon^{\mu_1 \dots \mu_n} dx^{\mu_{k+1}} \otimes \dots \otimes dx^{\mu_n}


Next: Return to Main Index or any other topic


Last updated: Comprehensive tensor analysis reference covering tensor algebra, calculus, and applications in physics and engineering.