Linear Algebra Vectors

Concept

Linear Algebra - Vectors

Vectors

Definition

A vector in Rn\mathbb{R}^n is an ordered n-tuple (v1,v2,,vn)(v_1, v_2, \dots, v_n).

Vector Operations

Addition: v+w=(v1+w1,v2+w2,,vn+wn)v + w = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)

Scalar Multiplication: cv=(cv1,cv2,,cvn)cv = (cv_1, cv_2, \dots, cv_n)

Properties

  • Commutative: v+w=w+vv + w = w + v
  • Associative: (u+v)+w=u+(v+w)(u + v) + w = u + (v + w)
  • Distributive: c(v+w)=cv+cwc(v + w) = cv + cw
  • Additive identity: 00 vector
  • Multiplicative identity: 1v=v1 \cdot v = v

Dot Product (Inner Product)

Definition: vw=v1w1+v2w2++vnwnv \cdot w = v_1w_1 + v_2w_2 + \dots + v_nw_n

Properties:

  • vw=wvv \cdot w = w \cdot v (commutative)
  • (u+v)w=uw+vw(u + v) \cdot w = u \cdot w + v \cdot w
  • (cv)w=c(vw)(cv) \cdot w = c(v \cdot w)

Geometric Meaning: vw=vwcosθv \cdot w = |v||w|\cos \theta, where θ\theta is angle between vectors.

Norm (Magnitude)

v=vv=v12+v22++vn2|v| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}

Properties:

  • v0|v| \geq 0, and v=0    v=0|v| = 0 \iff v = 0
  • cv=cv|cv| = |c||v|
  • Triangle inequality: v+wv+w|v + w| \leq |v| + |w|
  • Cauchy-Schwarz: vwvw|v \cdot w| \leq |v||w|

Unit Vectors

u=v/vu = v/|v| is unit vector in direction of vv.

Standard basis: i=(1,0,0),j=(0,1,0),k=(0,0,1)i = (1,0,0), j = (0,1,0), k = (0,0,1) in R3\mathbb{R}^3

Cross Product (\mathbb{R}^3 only)

v×w=(v2w3v3w2,v3w1v1w3,v1w2v2w1)v \times w = (v_2w_3 - v_3w_2, v_3w_1 - v_1w_3, v_1w_2 - v_2w_1)

Properties:

  • v×w=(w×v)v \times w = -(w \times v) (anti-commutative)
  • v×(w+u)=v×w+v×uv \times (w + u) = v \times w + v \times u
  • (cv)×w=c(v×w)(cv) \times w = c(v \times w)

Geometric Meaning:

  • v×w=vwsinθ|v \times w| = |v||w|\sin \theta (area of parallelogram)
  • v×wv \times w is perpendicular to both vv and ww
  • Right-hand rule determines direction

Scalar Triple Product (\mathbb{R}^3)

u(v×w)u \cdot (v \times w) gives volume of parallelepiped.

Property: u(v×w)=(u×v)w=(w×u)vu \cdot (v \times w) = (u \times v) \cdot w = (w \times u) \cdot v