Linear Algebra Vector Spaces

Concept

Linear Algebra - Vector Spaces

Vector Spaces

Definition

Set V with operations + (addition) and · (scalar multiplication) satisfying:

  1. u+v=v+uu + v = v + u (commutativity)
  2. (u+v)+w=u+(v+w)(u + v) + w = u + (v + w) (associativity)
  3. Exists zero vector 0 with v+0=vv + 0 = v
  4. Exists additive inverse v-v with v+(v)=0v + (-v) = 0
  5. 1v=v1 \cdot v = v
  6. c(dv)=(cd)vc(dv) = (cd)v (associativity of scalar multiplication)
  7. c(u+v)=cu+cvc(u + v) = cu + cv (distributivity)
  8. (c+d)v=cv+dv(c + d)v = cv + dv (distributivity)

Examples:

  • Rn\mathbb{R}^n: n-tuples of real numbers
  • Mm×nM_{m \times n}: m×nm \times n matrices
  • PnP_n: polynomials of degree n\leq n
  • C[a,b]C[a,b]: continuous functions on [a,b][a,b]

Subspaces

Subset WW of VV is subspace if closed under + and scalar multiplication (contains zero vector).

Test: For all u,vu,v in WW and scalars cc: u+vu+v in WW, cucu in WW.

Span

extSpan{v1,,vk}={c1v1++ckvk:ci scalars}\quad ext{Span}\{v_1, \dots, v_k\} = \{c_1v_1 + \dots + c_kv_k : c_i \text{ scalars}\}

Collection of all linear combinations.

Basis and Dimension

Basis: Linearly independent set that spans the space.

Standard basis for Rn\mathbb{R}^n: {e1,e2,,en}\{e_1, e_2, \dots, e_n\} where eie_i has 1 in i-th position.

Dimension: Number of vectors in basis.

All bases have same size.

Basis Theorem: Any linearly independent set can be extended to basis.

Any spanning set can be reduced to basis.

Coordinate Vectors

Given basis B={v1,,vn}B = \{v_1, \dots, v_n\}, any v=c1v1++cnvnv = c_1v_1 + \dots + c_nv_n.

[v]B=(c1,,cn)[v]_B = (c_1, \dots, c_n) is coordinate vector relative to B.

Row Space and Column Space

Row space: Span of rows of matrix.

Column space: Span of columns of matrix.

Fundamental Theorem of Linear Algebra:

  • rank(A)=dimension of column space=dimension of row space\text{rank}(A) = \text{dimension of column space} = \text{dimension of row space}
  • rank(A)+nullity(A)=n\text{rank}(A) + \text{nullity}(A) = n

Null Space

Null space: N(A)={x:Ax=0}N(A) = \{x : Ax = 0\}

Dimension = nullity(A)=number of free variables\text{nullity}(A) = \text{number of free variables}

Basis: Use special solutions from RREF.

Rank-Nullity Theorem

For m×nm \times n matrix A:

  • rank(A)+nullity(A)=n\text{rank}(A) + \text{nullity}(A) = n
  • rank(A)min(m,n)\text{rank}(A) \leq \min(m, n)