Linear Algebra Eigenvalues And Eigenvectors

Concept

Linear Algebra - Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

Definition

For n×nn \times n matrix AA, eigenvector veq0v eq 0 and eigenvalue λ\lambda satisfy: Av=λvAv = \lambda v

Geometric meaning: vv scaled by λ\lambda, direction unchanged (or reversed).

Characteristic Polynomial

Characteristic equation: det(AλI)=0\det(A - \lambda I) = 0

Characteristic polynomial: p(λ)=det(AλI)p(\lambda) = \det(A - \lambda I)

Eigenvalues are roots of p(λ)p(\lambda).

Eigenvalue Properties

Sum of eigenvalues: tr(A)=trace=sum of diagonal entries\text{tr}(A) = \text{trace} = \text{sum of diagonal entries}

Product of eigenvalues: det(A)\det(A)

Eigenspaces

Eigenspace EλE_\lambda: Null space of (AλI)(A - \lambda I)

Eλ={v:(AλI)v=0}E_\lambda = \{v : (A - \lambda I)v = 0\}

Diagonalization

AA is diagonalizable if A=PDP1A = PDP^{-1} where DD is diagonal (eigenvalues) and columns of PP are eigenvectors.

Necessary and sufficient: AA has nn linearly independent eigenvectors (not all matrices diagonalizable).

Process:

  1. Find eigenvalues λi\lambda_i
  2. Find linearly independent eigenvectors viv_i
  3. PP has eigenvectors as columns
  4. DD has eigenvalues on diagonal
  5. A=PDP1A = PDP^{-1}

Power of matrix: An=PDnP1A^n = PD^nP^{-1} (easy: just raise eigenvalues to power)

Matrix exponential: eA=PeDP1e^A = P e^D P^{-1}

Similar Matrices

AA and BB are similar if B=P1APB = P^{-1}AP for invertible PP.

Similar matrices have same eigenvalues, trace, determinant.

Spectral Theorem (Real)

If AA is symmetric (A=ATA = A^T), then:

  • All eigenvalues are real
  • AA is diagonalizable by orthogonal matrix (A=PDPTA = PDP^T)
  • Eigenvectors corresponding to different eigenvalues are orthogonal