Fundamentals Of Mathematics

Concept

Fundamentals - Algebra, Number Systems, and Pre-Calculus

Table of Contents

  1. Number Systems
  2. Basic Algebra
  3. Functions
  4. Sequences and Series
  5. Exponential and Logarithmic Functions
  6. Trigonometric Functions
  7. Polynomials
  8. Rational Functions
  9. Inequalities
  10. Coordinate Geometry

Number Systems

Real Numbers (ℝ)

The set of real numbers includes all rational and irrational numbers.

Properties:

  • Commutativity: a+b=b+aa + b = b + a, ab=baab = ba
  • Associativity: (a+b)+c=a+(b+c)(a + b) + c = a + (b + c), (ab)c=a(bc)(ab)c = a(bc)
  • Distributivity: a(b+c)=ab+aca(b + c) = ab + ac
  • Identity: a+0=aa + 0 = a, a1=aa \cdot 1 = a
  • Inverse: a+(a)=0a + (-a) = 0, a(1/a)=1a \cdot (1/a) = 1 (a0a \neq 0)

Absolute Value

For any real number xx: x={xif x0xif x<0|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}

Properties:

  • xy=xy|xy| = |x||y|
  • x+yx+y|x + y| \leq |x| + |y| (Triangle Inequality)
  • xyxy|x - y| \geq ||x| - |y||
  • x<a    a<x<a|x| < a \iff -a < x < a

Complex Numbers (ℂ)

A complex number is of the form z=a+biz = a + bi where a,bRa, b \in \mathbb{R} and i2=1i^2 = -1.

Operations:

  • Addition: (a+bi)+(c+di)=(a+c)+(b+d)i(a + bi) + (c + di) = (a + c) + (b + d)i
  • Multiplication: (a+bi)(c+di)=(acbd)+(ad+bc)i(a + bi)(c + di) = (ac - bd) + (ad + bc)i
  • Conjugate: zˉ=abi\bar{z} = a - bi, zzˉ=a2+b2=z2z \cdot \bar{z} = a^2 + b^2 = |z|^2
  • Modulus: z=a2+b2|z| = \sqrt{a^2 + b^2}
  • Argument: arg(z)=θ\arg(z) = \theta where tanθ=b/a\tan \theta = b/a

Polar Form: z=r(cosθ+isinθ)=reiθz = r(\cos \theta + i \sin \theta) = re^{i\theta} (Euler’s formula)

De Moivre’s Theorem: (cosθ+isinθ)n=cos(nθ)+isin(nθ)(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)


Basic Algebra

Binomial Theorem

(x+y)n=k=0n(nk)xnkyk(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k

where (nk)=n!k!(nk)!\binom{n}{k} = \frac{n!}{k!(n-k)!} is the binomial coefficient.

Pascal’s Triangle: Each entry is sum of two above it.

Factoring Formulas

  • Difference of squares: a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b)
  • Sum/difference of cubes:
    • a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)
    • a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)
  • Perfect squares: (a±b)2=a2±2ab+b2(a \pm b)^2 = a^2 \pm 2ab + b^2

Quadratic Formula

For ax2+bx+c=0ax^2 + bx + c = 0 (a0a \neq 0): x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Discriminant: Δ=b24ac\Delta = b^2 - 4ac

  • Δ>0\Delta > 0: two distinct real roots
  • Δ=0\Delta = 0: one repeated real root
  • Δ<0\Delta < 0: two complex conjugate roots

Completing the Square

For ax2+bx+c=0ax^2 + bx + c = 0: a(x+b2a)2=ax2+bx+b24aa\left(x + \frac{b}{2a}\right)^2 = ax^2 + bx + \frac{b^2}{4a}


Functions

Definition

A function f:ABf: A \to B assigns to each element xAx \in A exactly one element f(x)Bf(x) \in B.

Domain: Set A (inputs) Codomain: Set B (possible outputs) Range: {f(x) : x ∈ A} ⊆ B (actual outputs)

Types of Functions

Injection (One-to-One): f(x1)=f(x2)    x1=x2f(x_1) = f(x_2) \implies x_1 = x_2

Surjection (Onto): For every yBy \in B, there exists xAx \in A such that f(x)=yf(x) = y

Bijection (One-to-One and Onto): Both injective and surjective

Composition and Inverse

Composition: (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x))

Inverse Function: f1f^{-1} exists if and only if ff is bijective, and f1(f(x))=xf^{-1}(f(x)) = x, f(f1(y))=yf(f^{-1}(y)) = y

Even and Odd Functions

  • Even: f(x)=f(x)f(-x) = f(x) for all xx in domain
  • Odd: f(x)=f(x)f(-x) = -f(x) for all xx in domain

Periodic Functions

f(x+T)=f(x)f(x + T) = f(x) for all xx, where TT is the period.


Sequences and Series

Sequence

A sequence is a function from N\mathbb{N} to R\mathbb{R}: {a_n} = {a₁, a₂, a₃, …}

Types of Sequences

Arithmetic: an=a1+(n1)da_n = a_1 + (n-1)d where dd is common difference Sn=n2(a1+an)=n2[2a1+(n1)d]S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}[2a_1 + (n-1)d]

Geometric: an=a1rn1a_n = a_1r^{n-1} where rr is common ratio Sn=a11rn1r(r1)S_n = a_1 \frac{1-r^n}{1-r} \quad (r \neq 1)

Convergence of Sequences

A sequence {a_n} converges to L if for every ε > 0, there exists N such that |a_n - L| < ε for all n > N.

Series

A series is the sum of sequence terms: n=1an=limNn=1Nan\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n

Important Series

Geometric Series: S=n=0arn=a1rfor r<1S = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad \text{for } |r| < 1

Harmonic Series: n=11n\sum_{n=1}^{\infty} \frac{1}{n} diverges

p-Series: n=11np\sum_{n=1}^{\infty} \frac{1}{n^p} converges if p>1p > 1, diverges if p1p \leq 1

Telescoping Series: Many terms cancel out in partial sums

See also: Calculus for convergence tests and power series.


Exponential and Logarithmic Functions

Exponential Function

ex=limn(1+xn)ne^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n

Properties:

  • e0=1e^0 = 1
  • ex+y=exeye^{x+y} = e^x \cdot e^y
  • ex=1/exe^{-x} = 1/e^x
  • exy=(ex)ye^{xy} = (e^x)^y
  • d/dx(ex)=exd/dx(e^x) = e^x

Logarithmic Function

y=lnxif and only ifx=eyy = \ln x \quad \text{if and only if} \quad x = e^y

Properties:

  • ln(1)=0\ln(1) = 0
  • ln(e)=1\ln(e) = 1
  • ln(xy)=lnx+lny\ln(xy) = \ln x + \ln y
  • ln(x/y)=lnxlny\ln(x/y) = \ln x - \ln y
  • ln(xr)=rlnx\ln(x^r) = r \ln x
  • d/dx(lnx)=1/xd/dx(\ln x) = 1/x

Change of Base: logax=lnxlna\log_a x = \frac{\ln x}{\ln a}

Applications

  • Exponential growth/decay: y=Cekty = Ce^{kt}
  • Half-life: t1/2=(ln2)/kt_{1/2} = (\ln 2)/k
  • Continuous compounding: A=PertA = Pe^{rt}

Trigonometric Functions

Basic Definitions

  • sinθ=opposite/hypotenuse\sin \theta = \text{opposite}/\text{hypotenuse}
  • cosθ=adjacent/hypotenuse\cos \theta = \text{adjacent}/\text{hypotenuse}
  • tanθ=sinθ/cosθ\tan \theta = \sin \theta/\cos \theta
  • cscθ=1/sinθ\csc \theta = 1/\sin \theta
  • secθ=1/cosθ\sec \theta = 1/\cos \theta
  • cotθ=1/tanθ\cot \theta = 1/\tan \theta

Unit Circle

On unit circle, point at angle θ\theta is (cosθ,sinθ)(\cos \theta, \sin \theta)

Fundamental Identities

Pythagorean: sin2θ+cos2θ=1\\sin^2 \theta + \cos^2 \theta = 1 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta 1+cot2θ=csc2θ1 + \cot^2 \theta = \csc^2 \theta

Angle Sum/Difference:

  • sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B
  • cos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B
  • tan(A±B)=(tanA±tanB)/(1tanAtanB)\tan(A \pm B) = (\tan A \pm \tan B)/(1 \mp \tan A \tan B)

Double Angle:

  • sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta
  • cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta
  • tan2θ=2tanθ/(1tan2θ)\tan 2\theta = 2 \tan \theta/(1 - \tan^2 \theta)

Half Angle:

  • sin2(θ/2)=(1cosθ)/2\sin^2(\theta/2) = (1 - \cos \theta)/2
  • cos2(θ/2)=(1+cosθ)/2\cos^2(\theta/2) = (1 + \cos \theta)/2
  • tan(θ/2)=sinθ/(1+cosθ)=(1cosθ)/sinθ\tan(\theta/2) = \sin \theta/(1 + \cos \theta) = (1 - \cos \theta)/\sin \theta

Product to Sum:

  • sinAsinB=[cos(AB)cos(A+B)]/2\sin A \sin B = [\cos(A-B) - \cos(A+B)]/2
  • cosAcosB=[cos(AB)+cos(A+B)]/2\cos A \cos B = [\cos(A-B) + \cos(A+B)]/2
  • sinAcosB=[sin(A+B)+sin(AB)]/2\sin A \cos B = [\sin(A+B) + \sin(A-B)]/2

Law of Sines: a/sinA=b/sinB=c/sinCa/\sin A = b/\sin B = c/\sin C

Law of Cosines: a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A

Inverse Trigonometric Functions

  • arcsinx\arcsin x: [π/2,π/2][-\pi/2, \pi/2]
  • arccosx\arccos x: [0,π][0, \pi]
  • arctanx\arctan x: (π/2,π/2)(-\pi/2, \pi/2)
  • arcsec x,arccsc x,arccot x\text{arcsec } x, \text{arccsc } x, \text{arccot } x

Derivatives:

  • d/dx(arcsinx)=1/1x2d/dx(\arcsin x) = 1/\sqrt{1-x^2}
  • d/dx(arccosx)=1/1x2d/dx(\arccos x) = -1/\sqrt{1-x^2}
  • d/dx(arctanx)=1/(1+x2)d/dx(\arctan x) = 1/(1+x^2)

Polynomials

Polynomial Degree

P(x)=anxn+an1xn1++a1x+a0P(x) = a_n x^n + a_{n-1}x^{n-1} + \dots + a_1 x + a_0 Degree is nn if an0a_n \neq 0.

Fundamental Theorem of Algebra

Every polynomial of degree nn has exactly nn roots (counting multiplicity) over C\mathbb{C}.

Synthetic Division

Method for dividing polynomials by linear factors.

Rational Root Theorem

If p/qp/q (in lowest terms) is a root of P(x)=anxn++a0P(x) = a_n x^n + \dots + a_0, then pp divides a0a_0 and qq divides ana_n.

Vieta’s Formulas

For P(x)=x2+px+q=(xr)(xs)P(x) = x^2 + px + q = (x-r)(x-s):

  • Sum of roots: r+s=pr + s = -p
  • Product of roots: rs=qrs = q

For cubic ax3+bx2+cx+d=a(xr)(xs)(xt)ax^3 + bx^2 + cx + d = a(x-r)(x-s)(x-t):

  • r+s+t=b/ar + s + t = -b/a
  • rs+rt+st=c/ars + rt + st = c/a
  • rst=d/arst = -d/a

Rational Functions

Definition

R(x)=P(x)/Q(x)R(x) = P(x)/Q(x) where PP and QQ are polynomials.

Partial Fractions

Decompose rational functions for integration.

For non-repeated linear factors: A(xa)(xb)=C1xa+C2xb\frac{A}{(x-a)(x-b)} = \frac{C_1}{x-a} + \frac{C_2}{x-b}

For repeated factors: A(xa)k=C1xa+C2(xa)2++Ck(xa)k\frac{A}{(x-a)^k} = \frac{C_1}{x-a} + \frac{C_2}{(x-a)^2} + \cdots + \frac{C_k}{(x-a)^k}

For quadratic factors: Ax+Bx2+px+q (if irreducible)\frac{Ax+B}{x^2+px+q} \text{ (if irreducible)}


Inequalities

Basic Rules

  • If a<ba < b and c>0c > 0, then ac<bcac < bc
  • If a<ba < b and c<0c < 0, then ac>bcac > bc
  • If a<ba < b and b<cb < c, then a<ca < c
  • If a<ba < b and c<dc < d, then a+c<b+da + c < b + d

Important Inequalities

Arithmetic-Geometric Mean (AM-GM): For positive numbers: (x1+x2++xn)/n(x1x2xn)1/n(x_1 + x_2 + \dots + x_n)/n \geq (x_1x_2\dots x_n)^{1/n}

Cauchy-Schwarz: (a1b1++anbn)2(a12++an2)(b12++bn2)(a_1b_1 + \cdots + a_nb_n)^2 \leq (a_1^2 + \cdots + a_n^2)(b_1^2 + \cdots + b_n^2)

Bernoulli’s Inequality: (1+x)n1+nx(1 + x)^n \geq 1 + nx for x1,nNx \geq -1, n \in \mathbb{N}

Triangle Inequality: a+ba+b|a + b| \le |a| + |b|

Solving Polynomial Inequalities

  • Find critical points (zeros and discontinuities)
  • Test intervals between critical points
  • Determine sign of expression in each interval

Coordinate Geometry

Distance Formula

Distance between (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2): d=(x2x1)2+(y2y1)2d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}

Midpoint Formula

Midpoint of (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2): (x1+x22,y1+y22)\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)

Slope

Slope of line through (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2): m=y2y1x2x1=tanθm = \frac{y_2-y_1}{x_2-x_1} = \tan \theta

Equations of Lines

  • Point-slope: yy1=m(xx1)y - y_1 = m(x - x_1)
  • Slope-intercept: y=mx+by = mx + b
  • Standard: Ax+By+C=0Ax + By + C = 0
  • Intercept form: x/a+y/b=1x/a + y/b = 1
  • Parametric: x=x0+at,y=y0+btx = x_0 + at, y = y_0 + bt

Angle Between Lines

For lines with slopes m1m_1 and m2m_2: tanθ=m2m11+m1m2\tan \theta = \left|\frac{m_2-m_1}{1+m_1m_2}\right|

Lines are perpendicular if m1m2=1m_1m_2 = -1.

Conic Sections

Circle: (xh)2+(yk)2=r2(x-h)^2 + (y-k)^2 = r^2

  • Center: (h,k)(h, k), Radius: rr

Ellipse: (xh)2/a2+(yk)2/b2=1(x-h)^2/a^2 + (y-k)^2/b^2 = 1

  • Foci at distance cc from center: c2=a2b2c^2 = a^2 - b^2

Parabola: (yk)2=4p(xh)(y-k)^2 = 4p(x-h) or (xh)2=4p(yk)(x-h)^2 = 4p(y-k)

  • Focus distance pp from vertex

Hyperbola: (xh)2/a2(yk)2/b2=1(x-h)^2/a^2 - (y-k)^2/b^2 = 1

  • Asymptotes: yk=±(b/a)(xh)y-k = \pm(b/a)(x-h)
  • Foci: c2=a2+b2c^2 = a^2 + b^2

Extra Algebra Reference (merged from mathematics_GPT)

Powers and Roots

  • xmxn=xm+nx^m \cdot x^n = x^{m+n}
  • (xm)n=xmn(x^m)^n = x^{mn}
  • (xy)n=xnyn(xy)^n = x^n y^n
  • (x/y)n=xn/yn(x/y)^n = x^n / y^n
  • xm/n=xmn=(xn)mx^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m

Basic Factorings

  • a2b2=(a+b)(ab)a^2-b^2 = (a+b)(a-b)
  • a2+2ab+b2=(a+b)2a^2+2ab+b^2=(a+b)^2
  • a22ab+b2=(ab)2a^2-2ab+b^2=(a-b)^2
  • a3+b3=(a+b)(a2ab+b2)a^3+b^3=(a+b)(a^2-ab+b^2)
  • a3b3=(ab)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2)

Logarithmic Identities

  • loga(xy)=logax+logay\log_a(xy) = \log_a x + \log_a y
  • loga(x/y)=logaxlogay\log_a(x/y) = \log_a x - \log_a y
  • loga(xn)=nlogax\log_a(x^n) = n \log_a x
  • logax=logbxlogba\log_a x = \frac{\log_b x}{\log_b a}
  • logaa=1\log_a a = 1, loga1=0\log_a 1 = 0

Quadratic Equations and Vieta

(Virtually redundant but preserve Vieta formulas for completeness):

  • r1+r2=b/ar_1+r_2=-b/a
  • r1r2=c/ar_1r_2=c/a

Rational Root Theorem

If p/qp/q in lowest terms is a root of anxn+...+a0a_nx^n+...+a_0, then pp divides a0a_0, qq divides ana_n.

Remainder Theorem

P(x)P(x) divided by (xc)(x-c): remainder is P(c)P(c).

Other exponent rules/inequalities

  • axay=ax+ya^x \cdot a^y = a^{x+y}, (ax)y=axy(a^x)^y = a^{xy}, ax=1/axa^{-x}=1/a^x, a1/n=ana^{1/n}=\sqrt[n]{a}
  • If a<ba<b, c>0c>0, then ac<bcac<bc. If a<ba<b and c<0c<0, then ac>bcac>bc. If 0<a<b0<a<b, 0<1/b<1/a0<1/b<1/a

Common Algebraic Mistakes

  • a+ba+b\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}
  • (x+y)2x2+y2(x+y)^2 \neq x^2+y^2
  • 1/(a+b)1/a+1/b1/(a+b) \neq 1/a + 1/b
  • sin1(x)\sin^{-1}(x) is not 1/sinx1/\sin x

Next: Calculus


Last updated: Comprehensive fundamentals reference covering undergraduate through basic graduate material.