Fourier Analysis

Concept

Fourier Analysis - Series, Transforms, and Signal Processing

Table of Contents

  1. Fourier Series
  2. Fourier Transform
  3. Discrete Fourier Transform
  4. Fast Fourier Transform
  5. Convolution
  6. Applications
  7. Wavelets

Fourier Series

Periodic Functions

ff periodic with period TT: f(x+T)=f(x)f(x + T) = f(x) for all xx

Fundamental period: Smallest T>0T > 0

Functions with period 2π2\pi:

f(x)a02+n=1[ancos(nx)+bnsin(nx)]f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]

Coefficients

ana_n (cosine coefficients): an=1π02πf(x)cos(nx)dxa_n = \frac{1}{\pi} \int_0^{2\pi} f(x)\cos(nx) \, dx

for n=0,1,2,n = 0, 1, 2, \dots

bnb_n (sine coefficients): bn=1π02πf(x)sin(nx)dxb_n = \frac{1}{\pi} \int_0^{2\pi} f(x)\sin(nx) \, dx

for n=1,2,n = 1, 2, \dots

Parseval’s theorem: a022+n=1(an2+bn2)=1π02π[f(x)]2dx\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_0^{2\pi} [f(x)]^2 \, dx

Complex Form

f(x)cneinxf(x) \sim \sum c_n e^{inx}

where cn=12π02πf(x)einxdxc_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} \, dx

Relationship:

  • c0=a0/2c_0 = a_0/2
  • cn=(anibn)/2c_n = (a_n - ib_n)/2
  • cn=(an+ibn)/2c_{-n} = (a_n + ib_n)/2

General Period

ff with period 2L2L:

f(x)a02+n=1[ancos(nπxL)+bnsin(nπxL)]f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right]

Coefficients: an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^L f(x)\cos\left(\frac{n\pi x}{L}\right) \, dx bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^L f(x)\sin\left(\frac{n\pi x}{L}\right) \, dx

Convergence

Pointwise convergence: If ff piecewise continuous: limNSN(x)=f(x+)+f(x)2\lim_{N \to \infty} S_N(x) = \frac{f(x^+) + f(x^-)}{2}

where SNS_N is NN-th partial sum

Uniform convergence: If ff continuous and periodic, Fourier series converges uniformly

Gibbs Phenomenon

Overshoot near discontinuities does not vanish

Oscillations persist but area 0\to 0


Fourier Transform

Definition

Fourier transform: f^(ξ)=f(x)e2πiξxdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i\xi x} \, dx

Inverse: f(x)=f^(ξ)e2πiξxdξf(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i\xi x} \, d\xi

Alternative convention: f^(ω)=f(x)eiωxdx\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} \, dx

with factor 1/(2π)1/(2\pi) in inverse

Properties

Linearity: af+bg^(ξ)=af^(ξ)+bg^(ξ)\widehat{af + bg}(\xi) = a\hat{f}(\xi) + b\hat{g}(\xi)

Shift: f(xa)^(ξ)=e2πiaξf^(ξ)\widehat{f(x-a)}(\xi) = e^{-2\pi ia\xi} \hat{f}(\xi)

Modulation: f(x)e2πiax^(ξ)=f^(ξa)\widehat{f(x) e^{2\pi iax}}(\xi) = \hat{f}(\xi - a)

Scaling: f(ax)^(ξ)=1af^(ξa)\widehat{f(ax)}(\xi) = \frac{1}{|a|} \hat{f}\left(\frac{\xi}{a}\right)

Derivative: f(x)^(ξ)=2πiξf^(ξ)\widehat{f'(x)}(\xi) = 2\pi i\xi \hat{f}(\xi)

Multiplication by x: xf(x)^(ξ)=i2πf^(ξ)\widehat{xf(x)}(\xi) = \frac{i}{2\pi} \hat{f}'(\xi)

Convolution Theorem

fg^(ξ)=f^(ξ)g^(ξ)\widehat{f * g}(\xi) = \hat{f}(\xi) \hat{g}(\xi)

Product: fg^(ξ)=(f^g^)(ξ)\widehat{fg}(\xi) = (\hat{f} * \hat{g})(\xi)

Parseval’s Theorem

f(x)2dx=f^(ξ)2dξ\int_{-\infty}^{\infty} |f(x)|^2 \, dx = \int_{-\infty}^{\infty} |\hat{f}(\xi)|^2 \, d\xi

Energy conservation

Common Transforms

Gaussian: f(x)=eax2f(x) = e^{-ax^2} f^(ξ)=πaeπ2ξ2/a\hat{f}(\xi) = \sqrt{\frac{\pi}{a}} e^{-\pi^2\xi^2/a}

Rectangular pulse: f(x)=1f(x) = 1 for xa|x| \leq a, else 0 f^(ξ)=sin(2πaξ)πξ\hat{f}(\xi) = \frac{\sin(2\pi a\xi)}{\pi\xi}

Exponential decay: f(x)=eaxf(x) = e^{-a|x|} f^(ξ)=2aa2+4π2ξ2\hat{f}(\xi) = \frac{2a}{a^2 + 4\pi^2\xi^2}

Uncertainty Principle

Heisenberg uncertainty: ΔxΔξ14π\Delta x \cdot \Delta \xi \geq \frac{1}{4\pi}

Cannot localize both in space and frequency simultaneously


Discrete Fourier Transform

Definition

For sequence x[n],n=0,,N1x[n], n = 0, \dots, N-1:

X[k]=n=0N1x[n]e2πikn/NX[k] = \sum_{n=0}^{N-1} x[n] e^{-2\pi ikn/N}

Inverse DFT: x[n]=1Nk=0N1X[k]e2πikn/Nx[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{2\pi ikn/N}

Periodic: X[k+N]=X[k],x[n+N]=x[n]X[k + N] = X[k], x[n + N] = x[n]

Properties

Circular shift:

DFT{x[nm]}=e2πikm/NX[k]\text{DFT}\{x[n-m]\} = e^{-2\pi ikm/N} X[k]

Convolution (circular):

DFT{x[n]y[n]}=X[k]Y[k]\text{DFT}\{x[n] \circledast y[n]\} = X[k] Y[k]

Parseval: n=0N1x[n]2=1Nk=0N1X[k]2\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2

Zero-Padding

Add zeros to extend sequence

Interpolates spectrum

Useful for increased frequency resolution


Fast Fourier Transform

Computational Complexity

Naive DFT: O(N2)O(N^2) operations

FFT: O(NlogN)O(N \log N) operations

Radix-2 FFT: NN is power of 2

Decimation-in-Time (DIT): Divide into even and odd subsequences

Recursive: FFT(N)=2FFT(N/2)+O(N)FFT(N) = 2 FFT(N/2) + O(N)

Twiddle factors: WNkn=e2πikn/NW_N^{kn} = e^{-2\pi ikn/N}

Cooley-Tukey Algorithm

For N=2mN = 2^m:

Recursively compute FFTs of half-size, combine

Butterfly operation: Sum and difference with twiddle factor

Practical Considerations

Window functions: Reduce spectral leakage

Blackman-Harris: Suppresses side lobes

Zero-padding: Increase frequency resolution without interpolation


Convolution

Continuous Convolution

(fg)(x)=f(y)g(xy)dy(f * g)(x) = \int f(y)g(x-y) dy

Properties:

  • Commutative: fg=gff * g = g * f
  • Associative: (fg)h=f(gh)(f * g) * h = f * (g * h)
  • Distributive: f(g+h)=fg+fhf * (g + h) = f * g + f * h

Unit impulse δ(x)\delta(x): fδ=ff * \delta = f

Fourier transform: fg^=f^g^\widehat{f * g} = \hat{f} \hat{g}

Discrete Convolution

(xy)[n]=x[k]y[nk](x * y)[n] = \sum x[k]y[n-k]

Circular convolution (periodic): (xy)[n]=x[k]y[(nk)modN](x \circledast y)[n] = \sum x[k]y[(n-k) \mod N]

Linear convolution via DFT: Zero-pad both sequences to length M+N1\geq M + N - 1


Applications

Signal Processing

Filtering: Multiply in frequency domain

Noise reduction: Remove high-frequency components

Compression: Quantize Fourier coefficients

Image Processing

2D Fourier transform: F(u,v)=f(x,y)e2πi(ux+vy)dxdyF(u,v) = \iint f(x,y)e^{-2\pi i(ux+vy)} dx dy

Filtering: Blur, sharpen, edge detection

Pattern recognition: Correlation

Partial Differential Equations

Heat equation: ut=k2uu_t = k\nabla^2 u

Take Fourier transform: u^t=k(2πξ)2u^\hat{u}_t = -k(2\pi\xi)^2\hat{u}

Solution: u^(ξ,t)=u^(ξ,0)ek(2πξ)2t\hat{u}(\xi,t) = \hat{u}(\xi,0)e^{-k(2\pi\xi)^2t}

Inverse: Convolution with heat kernel

Wave equation: utt=c22uu_{tt} = c^2\nabla^2 u

Dispersion relation: ω=ck\omega = c|k|


Wavelets

Short-Time Fourier Transform

STFT: Windowed Fourier transform

STFT[f](t,ξ)=f(τ)w(τt)eiξτdτSTFT[f](t,ξ) = \int f(τ)w(τ-t)e^{-iξτ} dτ

Time-frequency resolution: Trade-off (uncertainty principle)

Wavelet Transform

Continuous wavelet transform:

WT[f](a,b)=1af(t)ψ(tba)dtWT[f](a,b) = \frac{1}{\sqrt{a}} \int f(t) \psi\left(\frac{t-b}{a}\right) dt

a: scale, b: translation

Multiresolution analysis: Different scales

Mother wavelet ψ(t)\psi(t): Oscillates, decays

Haar Wavelets

Simplest example:

Scaling function: ϕ(x)=1\phi(x) = 1 for 0x10 \leq x \leq 1, else 0

Wavelet: ψ(x)=1\psi(x) = 1 for 0x<1/2,10 \leq x < 1/2, -1 for 1/2x<11/2 \leq x < 1

Orthonormal basis at each resolution level

Applications

Data compression: JPEG 2000

Signal denoising: Threshold small coefficients

Image processing: Multiresolution features

Compressed sensing: Random sampling with structure


Next: Tensor Analysis


Last updated: Comprehensive Fourier analysis reference covering series, transforms, and wavelets.