Differential Equations

Concept

Differential Equations - ODEs, PDEs, and Solution Methods

Table of Contents

  1. First-Order ODEs
  2. Second-Order Linear ODEs
  3. Higher-Order Linear ODEs
  4. Systems of ODEs
  5. Series Solutions
  6. Qualitative Analysis
  7. Laplace Transform
  8. Partial Differential Equations
  9. Classification of PDEs

First-Order ODEs

General Form

dydt=f(t,y)\frac{dy}{dt} = f(t, y)

Separable Equations

Form: dy/dt = f(t)g(y) or M(t)dt + N(y)dy = 0

Solution:

  1. Separate: dy/g(y) = f(t)dt
  2. Integrate both sides
  3. Solve for y (implicit or explicit)

Example: dy/dt = y²t dy/y² = t dt → -1/y = t²/2 + C → y = -2/(t² + C)

Linear First-Order ODEs

Form: dy/dt + p(t)y = q(t)

Solution Method - Integrating Factor:

μ(t)=ep(t)dtμ(t) = e^{\int p(t)dt}

Multiply both sides by μ: μ(t)dydt+μ(t)p(t)y=μ(t)q(t)μ(t)\frac{dy}{dt} + μ(t)p(t)y = μ(t)q(t)

Left side is derivative of μ(t)y: ddt[μ(t)y]=μ(t)q(t)\frac{d}{dt}[μ(t)y] = μ(t)q(t)

Integrate: y=1μ(t)μ(t)q(t)dty = \frac{1}{μ(t)}\int μ(t)q(t)dt

Example: dy/dt + 2ty = t μ(t) = e^(2∫t dt) = e^(t²) e^(t²)(dy/dt + 2ty) = e^(t²)t d/d Filter [e^(t²)y] = e^(t²)t y = e^(-t²)[∫e^(t²)t dt + C]

Exact Equations

Form: M(x,y)dx + N(x,y)dy = 0

Exact if: ∂M/∂y = ∂N/∂x

Solution:

  1. Find F such that ∂F/∂x = M, ∂F/∂y = N
  2. F(x,y) = C is solution

Method: Integrate M with respect to x, compare with N.

Example: (3x²+2xy)dx + (x²+1)dy = 0 Check: ∂M/∂y = 2x = ∂N/∂x ✓ F = ∫(3x²+2xy)dx = x³+x²y + h(y) Compare: x²+1 = ∂F/∂y = x²+h’(y) → h’(y) = 1 → h(y) = y F = x³+x²y + y = C

Bernoulli Equations

Form: dy/dt + p(t)y = q(t)y^n

Substitution: u = y^(1-n) Then: du/dt + (1-n)p(t)u = (1-n)q(t)

Homogeneous Equations

Form: dy/dt = F(y/t)

Substitution: u = y/t, then dy/dt = u + t(du/dt)

Riccati Equations

Form: dy/dt = p(t) + q(t)y + r(t)y²

Can often be reduced to linear or separable with proper substitution.


Second-Order Linear ODEs

General Form

a(t)d2ydt2+b(t)dydt+c(t)y=f(t)a(t)\frac{d^2y}{dt^2} + b(t)\frac{dy}{dt} + c(t)y = f(t)

Homogeneous: f(t) = 0

Constant Coefficient Case

ay+by+cy=0ay'' + by' + cy = 0

Characteristic equation: ar² + br + c = 0

Roots: r1,2=b±b24ac2ar_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Fundamental Solutions

Case 1: Distinct Real Roots (r₁ ≠ r₂) y=C1er1t+C2er2ty = C_1e^{r_1t} + C_2e^{r_2t}

Case 2: Repeated Real Root (r₁ = r₂ = r) y=(C1+C2t)erty = (C_1 + C_2t)e^{rt}

Case 3: Complex Conjugate Roots (r = α ± βi) y=eαt(C1cosβt+C2sinβt)y = e^{αt}(C_1\cos βt + C_2\sin βt) or y=Aeαtcos(βtφ)y = Ae^{αt}\cos(βt - φ)

Non-Homogeneous: Undetermined Coefficients

Form: ay” + by’ + cy = g(t)

Method:

  1. Solve homogeneous equation
  2. Find particular solution y_p

Guess based on g(t):

  • Polynomial of degree n: try polynomial of same degree
  • e^(αt): try Ae^(αt)
  • sin(βt) or cos(βt): try Asin(βt) + Bcos(βt)
  • e^(αt) times polynomial: try e^(αt) times polynomial
  • Products: try product of guesses

Adjustment: If guess is solution to homogeneous equation, multiply by t.

Example: y” - 4y’ + 4y = t Homogeneous: (r-2)² = 0 → y_h = (C₁ + C₂t)e^(2t) Guess: y_p = At + B y_p” - 4y_p’ + 4y_p = -4A + 4(At+B) = t 4A = 1, -4A + 4B = 0 A = 1/4, B = 1/4 y_p = t/4 + 1/4

Variation of Parameters

For: y” + p(t)y’ + q(t)y = g(t) (coefficients not necessarily constant)

Method: If y₁, y₂ are independent solutions to homogeneous equation:

yp(t)=y1y2g(t)W(y1,y2)dt+y2y1g(t)W(y1,y2)dty_p(t) = -y_1\int\frac{y_2g(t)}{W(y_1,y_2)}dt + y_2\int\frac{y_1g(t)}{W(y_1,y_2)}dt

where W(y₁,y₂) = y₁y₂’ - y₁’y₂ is Wronskian.

Reduction of Order

If one solution y₁ known, find second linearly independent solution.

Substitution: y₂ = v(t)y₁ y₂’ = v’y₁ + vy₁’ y₂” = v”y₁ + 2v’y₁’ + vy₁”

Substitute into ODE, set w = v’: y1w+(2y1+p(t)y1)w=0y_1w' + (2y_1' + p(t)y_1)w = 0

Solve for w, integrate to get v, multiply by y₁.


Higher-Order Linear ODEs

General Form

an(t)dnydtn+an1(t)dn1ydtn1++a1(t)dydt+a0(t)y=f(t)a_n(t)\frac{d^ny}{dt^n} + a_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \cdots + a_1(t)\frac{dy}{dt} + a_0(t)y = f(t)

Constant Coefficient Case

Characteristic equation: a_nr^n + a_(n-1)r^(n-1) + … + a_0 = 0

General solution:

  • Distinct real root r: add e^(rt)
  • Real root r with multiplicity m: e^(rt), te^(rt), …, t^(m-1)e^(rt)
  • Complex pair α ± βi with multiplicity m: e^(αt)(cos βt, sin βt, t times, …, t^(m-1) times)

Fundamental set: n linearly independent solutions.

Non-Homogeneous

General solution: y = y_h + y_p

y_h from homogeneous equation y_p using undetermined coefficients or variation of parameters.


Systems of ODEs

General Form

dxdt=Ax+b(t)\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}(t)

where x is n-vector, A is n×n matrix, b is n-vector.

Homogeneous Systems

dxdt=Ax\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}

Solution: x(t) = e^(At)c, where c is constant vector.

Matrix Exponential

Definition: eAt=I+At+(At)22!+(At)33!+e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \frac{(\mathbf{A}t)^2}{2!} + \frac{(\mathbf{A}t)^3}{3!} + \cdots

Properties:

  • e^0 = I
  • If AB = BA, then e^(A+B) = e^A e^B
  • (e^A)⁻¹ = e^(-A)

Diagonalization Method

If A is diagonalizable (A = PDP⁻¹):

eAt=PeDtP1e^{\mathbf{A}t} = \mathbf{P}e^{\mathbf{D}t}\mathbf{P}^{-1}

where e^(Dt) is diagonal with e^(λᵢt) entries.

General solution: x(t) = Pe^(Dt) P⁻¹ c

Can also be written as: x(t) = c₁v₁e^(λ₁t) + c₂v₂e^(λ₂t) + … + cₙvₙe^(λₙt)

where vᵢ are eigenvectors.

Phase Portrait

Two-dimensional system visualization.

Types of equilibrium (at origin):

  • Node (sinks/sources): Real eigenvalues, same sign (asymptotically stable if negative)
  • Saddle: Real eigenvalues, opposite signs (unstable)
  • Spiral: Complex eigenvalues with nonzero real part (stable if Re(λ) < 0)
  • Center: Pure imaginary eigenvalues (stable, not asymptotically stable)

Stability: If all eigenvalues have negative real parts.

Non-Homogeneous Systems

dxdt=Ax+b(t)\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}(t)

Method 1: Undetermined coefficients (if b(t) is polynomial, exponential, etc.)

Method 2: Variation of parameters x_p = Φ(t)∫Φ⁻¹(t)b(t)dt where Φ(t) is fundamental matrix (columns are solutions).


Series Solutions

Power Series Method

For y” + p(x)y’ + q(x)y = 0:

Try: y = ∑∞_{n=0} a_nx^n

Substitute, find recurrence relation for a_n.

Ordinary Points vs. Singular Points

Ordinary point: p(x), q(x) analytic at x₀

Regular singular point: (x-x₀)p(x), (x-x₀)²q(x) analytic

Irregular singular point: Otherwise

Frobenius Method

For regular singular point at x = 0:

Try: y = x^r ∑∞{n=0} a_nx^n = ∑∞{n=0} a_nx^(n+r)

Substitute into ODE, find indicial equation for r.

Cases:

  • Distinct roots (not differing by integer): Two independent solutions
  • Double root or differing by integer: Need reduction method

Qualitative Analysis

Autonomous Systems

First-order: dy/dt = f(y) Equilibrium where f(y) = 0.

Phase line analysis:

  • If f(y) > 0, y increasing
  • If f(y) < 0, y decreasing

Stability:

  • f’(y₀) < 0: stable equilibrium
  • f’(y₀) > 0: unstable equilibrium

Systems of ODEs

Analyze equilibrium points where dx/dt = dy/dt = 0.

Linearization: Near equilibrium, system ~ dξ/dt = Jξ where J is Jacobian.

Jacobian: J=[f1xf1yf2xf2y]\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}

Eigenvalues of J determine local behavior.

Lyapunov Stability

Stable: Small perturbations stay bounded

Asymptotically stable: Small perturbations → 0 as t → ∞

Unstable: Some perturbations grow

Poincaré-Bendixson Theorem

For 2D autonomous systems in bounded region with no equilibrium: closed orbit (limit cycle) exists.

Bifurcations

Qualitative change in behavior as parameter changes.

Types: Saddle-node, transcritical, pitchfork, Hopf bifurcation.


Laplace Transform

Definition

F(s)=L{f(t)}=0estf(t)dtF(s) = \mathcal{L}\{f(t)\} = \int_0^{\infty} e^{-st}f(t)dt

Domain: s real or complex.

Properties

Linearity: L{af(t)+bg(t)}=aF(s)+bG(s)\mathcal{L}\{af(t) + bg(t)\} = aF(s) + bG(s)

Derivatives: L{f(t)}=sF(s)f(0)\mathcal{L}\{f'(t)\} = sF(s) - f(0) L{f(t)}=s2F(s)sf(0)f(0)\mathcal{L}\{f''(t)\} = s^2F(s) - sf(0) - f'(0)

Integrals: L{0tf(τ)dτ}=F(s)s\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}

Translation: L{eatf(t)}=F(sa)\mathcal{L}\{e^{at}f(t)\} = F(s-a) L{f(ta)u(ta)}=easF(s)\mathcal{L}\{f(t-a)u(t-a)\} = e^{-as}F(s)

where u(t) is unit step.

Convolution: L{fg}=F(s)G(s)\mathcal{L}\{f * g\} = F(s)G(s)

where (f * g)(t) = ∫₀ᵗ f(τ)g(t-τ)dτ.

Common Transforms

  • δ(t): 1 (Dirac delta)
  • u(t): 1/s (step function)
  • t^n: n!/s^(n+1)
  • e^(at): 1/(s-a)
  • sin at: a/(s²+a²)
  • cos at: s/(s²+a²)
  • t^n e^(at): n!/(s-a)^(n+1)

Solving ODEs

Method:

  1. Take Laplace transform of both sides
  2. Solve algebraic equation for F(s)
  3. Use inverse transform to get f(t)

Example: y” + y = e^(-t), y(0) = 1, y’(0) = 0 s²F(s) - s + F(s) = 1/(s+1) F(s) = s/(s²+1) + 1/[(s²+1)(s+1)] Use partial fractions: 1/[(s²+1)(s+1)] = 1/2 · 1/(s+1) - 1/2 · (s-1)/(s²+1) Inverse: y(t) = cos t + 1/2 e^(-t) - 1/2 cos t + 1/2 sin t

Inverse Transform

Use tables, partial fractions, completing square for quadratics.


Partial Differential Equations

Classification

Order: Highest derivative order

Linear: Coefficients depend only on variables

Homogeneous: No forcing term

Second-order linear PDE: a2ux2+b2uxy+c2uy2+=0a\frac{\partial^2u}{\partial x^2} + b\frac{\partial^2u}{\partial x\partial y} + c\frac{\partial^2u}{\partial y^2} + \cdots = 0

Discriminant: Δ = b² - 4ac

Types:

  • Hyperbolic: Δ > 0 (wave equation)
  • Parabolic: Δ = 0 (diffusion equation)
  • Elliptic: Δ < 0 (Laplace equation)

Separation of Variables

Method: Assume u(x,t) = X(x)T(t), substitute, split into ODEs.

Example - Heat equation: u_t = k u_xx on [0,L] with u(0,t) = u(L,t) = 0 Assume u(x,t) = X(x)T(t): XT’ = kX”T T’/T = kX”/X = constant (say -λk) ODEs: X” + λX = 0, T’ = -λkT With BC: X(0) = X(L) = 0 Eigenvalues: λ_n = (nπ/L)² Eigenfunctions: X_n(x) = sin(nπx/L) T_n(t) = e^(-λ_n kt) u(x,t) = Σ A_n sin(nπx/L) e^(-λ_n kt) Initial condition determines A_n via Fourier series.

Method of Characteristics

For first-order PDEs.

Quasi-linear: a(x,y,u)u_x + b(x,y,u)u_y = c(x,y,u)

Characteristic curves: dx/dt = a, dy/dt = b, du/dt = c

Solve ODE system.

Fourier Method

Fourier series: Expand unknown in series of orthogonal functions (sines, cosines, eigenfunctions).

Fourier sine series: u(x) = Σ B_n sin(nπx/L)

Fourier cosine series: u(x) = A₀/2 + Σ A_n cos(nπx/L)


Classification of PDEs

Wave Equation (Hyperbolic)

2ut2=c22ux2\frac{\partial^2u}{\partial t^2} = c^2\frac{\partial^2u}{\partial x^2}

D’Alembert’s solution: u(x,t)=12[f(xct)+f(x+ct)]+12cxctx+ctg(ξ)dξu(x,t) = \frac{1}{2}[f(x-ct) + f(x+ct)] + \frac{1}{2c}\int_{x-ct}^{x+ct} g(\xi)d\xi

Heat Equation (Parabolic)

ut=k2ux2\frac{\partial u}{\partial t} = k\frac{\partial^2u}{\partial x^2}

Fundamental solution: ϕ(x,t)=14πktex2/(4kt)\phi(x,t) = \frac{1}{\sqrt{4\pi kt}}e^{-x^2/(4kt)}

General: Convolution of initial condition with fundamental solution.

Laplace’s Equation (Elliptic)

2ux2+2uy2=0\frac{\partial^2u}{\partial x^2} + \frac{\partial^2u}{\partial y^2} = 0

Mean value property: u is average of boundary values.

Maximum principle: Maximum/minimum on boundary.

Poisson’s Equation

2u=f-\nabla^2u = f

Inhomogeneous Laplace equation.


Supplementary D.E. Techniques (from mathematics_GPT)

Summary Tables

First-Order ODEs

FormMethod
SeparableSeparate, integrate, solve for y
LinearIntegrating Factor: μ(t) = e^(∫p(t)dt), multiply, integrate
ExactM(x,y)dx + N(x,y)dy = 0, check ∂M/∂y = ∂N/∂x, find F, F(x,y) = C
Bernoulliu = y^(1-n), du/dt + (1-n)p(t)u = (1-n)q(t)
Homogeneousu = y/t, dy/dt = u + t(du/dt)
Riccatip(t) + q(t)y + r(t)y², often reduced to linear or separable

Second-Order Linear ODEs

FormMethod
Generala(t)y” + b(t)y’ + c(t)y = f(t)
Homogeneousay” + by’ + cy = 0, characteristic equation ar² + br + c = 0
Non-Homogeneousay” + by’ + cy = g(t), undetermined coefficients: solve homogeneous, guess y_p, adjust if necessary
Variation of Parametersy_p(t) = -y_1∫(y_2g(t)/W(y_1,y_2))dt + y_2∫(y_1g(t)/W(y_1,y_2))dt
Reduction of Ordery₂ = v(t)y₁, y₂’ = v’y₁ + vy₁’, y₂” = v”y₁ + 2v’y₁’ + vy₁”, y_1w’ + (2y_1’ + p(t)y_1)w = 0

Systems of ODEs

FormMethod
Generald\mathbf{x}/dt = \mathbf{A}\mathbf{x} + \mathbf{b}(t)
Homogeneousd\mathbf{x}/dt = \mathbf{A}\mathbf{x}, x(t) = e^(At)c
Non-Homogeneousd\mathbf{x}/dt = \mathbf{A}\mathbf{x} + \mathbf{b}(t), undetermined coefficients or variation of parameters

Series Solutions

FormMethod
Power Seriesy” + p(x)y’ + q(x)y = 0, try y = ∑∞_{n=0} a_nx^n, substitute, find recurrence relation
Frobeniusy = x^r ∑∞_{n=0} a_nx^n, substitute, find indicial equation

Qualitative Analysis

System TypeAnalysis
Autonomous (First-order)dy/dt = f(y), equilibrium where f(y) = 0, phase line analysis, stability
Systems of ODEsequilibrium points, linearization, Jacobian, eigenvalues
Lyapunov Stabilitysmall perturbations, asymptotically stable, unstable
Poincaré-Bendixson2D autonomous systems, bounded region, no equilibrium, closed orbit (limit cycle)
Bifurcationsqualitative changes as parameter changes, types: saddle-node, transcritical, pitchfork, Hopf

Solution Checklists

First-Order ODEs

  • Separable: Check if dy/dt = f(t)g(y) or M(t)dt + N(y)dy = 0.
  • Linear: Check if dy/dt + p(t)y = q(t).
  • Exact: Check if M(x,y)dx + N(x,y)dy = 0.
  • Bernoulli: Check if dy/dt + p(t)y = q(t)y^n.
  • Homogeneous: Check if dy/dt = F(y/t).
  • Riccati: Check if dy/dt = p(t) + q(t)y + r(t)y².

Second-Order Linear ODEs

  • General: Check if a(t)y” + b(t)y’ + c(t)y = f(t).
  • Homogeneous: Check if ay” + by’ + cy = 0.
  • Non-Homogeneous: Check if ay” + by’ + cy = g(t).
  • Variation of Parameters: Check if y_p(t) = -y_1∫(y_2g(t)/W(y_1,y_2))dt + y_2∫(y_1g(t)/W(y_1,y_2))dt.
  • Reduction of Order: Check if y₂ = v(t)y₁, y₂’ = v’y₁ + vy₁’, y₂” = v”y₁ + 2v’y₁’ + vy₁”, y_1w’ + (2y_1’ + p(t)y_1)w = 0.

Systems of ODEs

  • General: Check if d\mathbf{x}/dt = \mathbf{A}\mathbf{x} + \mathbf{b}(t).
  • Homogeneous: Check if d\mathbf{x}/dt = \mathbf{A}\mathbf{x}.
  • Non-Homogeneous: Check if d\mathbf{x}/dt = \mathbf{A}\mathbf{x} + \mathbf{b}(t).

Series Solutions

  • Power Series: Check if y” + p(x)y’ + q(x)y = 0.
  • Frobenius: Check if y = x^r ∑∞_{n=0} a_nx^n.

Unique Explanation Shortcuts

  1. Integrating Factor (μ(t)):

    • For dy/dt + p(t)y = q(t), μ(t) = e^(∫p(t)dt).
    • Multiply both sides by μ(t) to make the left side a derivative.
  2. Exact Equations:

    • M(x,y)dx + N(x,y)dy = 0 is exact if ∂M/∂y = ∂N/∂x.
    • Find F such that ∂F/∂x = M and ∂F/∂y = N.
    • F(x,y) = C is the solution.
  3. Variation of Parameters:

    • For y” + p(t)y’ + q(t)y = g(t), if y₁, y₂ are independent solutions to homogeneous, then y_p(t) = -y_1∫(y_2g(t)/W(y_1,y_2))dt + y_2∫(y_1g(t)/W(y_1,y_2))dt.
    • W(y₁,y₂) is the Wronskian.
  4. Reduction of Order:

    • If y₁ is a solution, find y₂ = v(t)y₁.
    • y₂’ = v’y₁ + vy₁’.
    • y₂” = v”y₁ + 2v’y₁’ + vy₁”.
    • Substitute into ODE, set w = v’.
    • Solve y_1w’ + (2y_1’ + p(t)y_1)w = 0 for w.

Next: Complex Analysis or Linear Algebra


Last updated: Comprehensive differential equations reference covering ODEs, systems, and PDEs.