Calculus Limits
ConceptCalculus - Limits
Limits
Definition
For f(x) → L as x → a:
For every ε > 0, there exists δ > 0 such that |f(x) - L| < ε whenever 0 < |x - a| < δ
One-Sided Limits
- Right limit:
- Left limit:
The limit exists if and only if both one-sided limits exist and are equal.
Limit Laws
If and :
- (if M ≠ 0)
Indeterminate Forms
0/0, ∞/∞, 0·∞, ∞ - ∞, 0⁰, 1^∞, ∞⁰
L’Hôpital’s Rule
If gives 0/0 or ∞/∞, then:
Provided the latter limit exists.
Important Limits
- $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1