Calculus Limits

Concept

Calculus - Limits

Limits

Definition

For f(x) → L as x → a: limxaf(x)=L\lim_{x \to a} f(x) = L

For every ε > 0, there exists δ > 0 such that |f(x) - L| < ε whenever 0 < |x - a| < δ

One-Sided Limits

  • Right limit: limxa+f(x)=L\lim_{x \to a^+} f(x) = L
  • Left limit: limxaf(x)=L\lim_{x \to a^-} f(x) = L

The limit exists if and only if both one-sided limits exist and are equal.

Limit Laws

If limxaf(x)=L\lim_{x \to a} f(x) = L and limxag(x)=M\lim_{x \to a} g(x) = M:

  • lim[f(x)±g(x)]=L±M\lim [f(x) \pm g(x)] = L \pm M
  • lim[cf(x)]=cL\lim [cf(x)] = cL
  • lim[f(x)g(x)]=LM\lim [f(x)g(x)] = LM
  • lim[f(x)/g(x)]=L/M\lim [f(x)/g(x)] = L/M (if M ≠ 0)
  • lim[f(x)n]=Ln\lim [f(x)^n] = L^n
  • limf(x)n=Ln\lim \sqrt[n]{f(x)} = \sqrt[n]{L}

Indeterminate Forms

0/0, ∞/∞, 0·∞, ∞ - ∞, 0⁰, 1^∞, ∞⁰

L’Hôpital’s Rule

If limf(x)/g(x)\lim f(x)/g(x) gives 0/0 or ∞/∞, then: limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

Provided the latter limit exists.

Important Limits

  • limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1
  • limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}
  • limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1
  • limx(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e
  • limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1
  • $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1