Calculus Integrals
ConceptCalculus - Antiderivatives and Integrals
Antiderivatives and Integrals
Antiderivative
F is an antiderivative of f if F’(x) = f(x).
General form: If F is antiderivative, then F(x) + C is family of all antiderivatives.
Indefinite Integral
Definite Integral (Riemann Sum)
where Δx = (b-a)/n.
Fundamental Theorems of Calculus
FTC Part 1: If f is continuous on [a,b], then function F(x) = ∫[a to x] f(t)dt is differentiable on (a,b) and F’(x) = f(x).
FTC Part 2: If f is continuous on [a,b] and F is antiderivative of f, then:
Basic Integration Formulas
- ∫ dx = x + C
- ∫ xⁿ dx = x^(n+1)/(n+1) + C (n ≠ -1)
- ∫ 1/x dx = ln|x| + C
- ∫ e^x dx = e^x + C
- ∫ a^x dx = a^x/ln a + C
- ∫ sin x dx = -cos x + C
- ∫ cos x dx = sin x + C
- ∫ sec² x dx = tan x + C
- ∫ csc² x dx = -cot x + C
- ∫ sec x tan x dx = sec x + C
- ∫ csc x cot x dx = -csc x + C
Integration Rules
Constant Multiple: ∫ cf(x)dx = c∫f(x)dx
Sum/Difference: ∫ [f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx
Substitution: ∫ f(g(x))g’(x)dx = ∫ f(u)du where u = g(x)
Average Value