Calculus Improper Integrals

Concept

Calculus - Improper Integrals

Improper Integrals

Type 1: Infinite Intervals

af(x)dx=limtatf(x)dx\int_a^{\infty} f(x)dx = \lim_{t \to \infty} \int_a^t f(x)dx

bf(x)dx=limttbf(x)dx\int_{-\infty}^b f(x)dx = \lim_{t \to -\infty} \int_t^b f(x)dx

f(x)dx=cf(x)dx+cf(x)dx\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^c f(x)dx + \int_c^{\infty} f(x)dx

Type 2: Discontinuous Integrands

If f has discontinuity at a: abf(x)dx=limta+tbf(x)dx\int_a^b f(x)dx = \lim_{t \to a^+} \int_t^b f(x)dx

Comparison Test

If 0 ≤ g(x) ≤ f(x) for x ≥ a:

  • If ∫[a to ∞] f(x)dx converges, then ∫[a to ∞] g(x)dx converges
  • If ∫[a to ∞] g(x)dx diverges, then ∫[a to ∞] f(x)dx diverges

p-Integral: ∫[1 to ∞] 1/x^p dx converges if p > 1, diverges if p ≤ 1.