Calculus Improper Integrals
ConceptCalculus - Improper Integrals
Improper Integrals
Type 1: Infinite Intervals
Type 2: Discontinuous Integrands
If f has discontinuity at a:
Comparison Test
If 0 ≤ g(x) ≤ f(x) for x ≥ a:
- If ∫[a to ∞] f(x)dx converges, then ∫[a to ∞] g(x)dx converges
- If ∫[a to ∞] g(x)dx diverges, then ∫[a to ∞] f(x)dx diverges
p-Integral: ∫[1 to ∞] 1/x^p dx converges if p > 1, diverges if p ≤ 1.