Calculus Applications Of Integrals

Concept

Calculus - Applications of Integrals

Applications of Integrals

Area Between Curves

Area=ab[f(x)g(x)]dx\text{Area} = \int_a^b [f(x) - g(x)]dx

where f(x) ≥ g(x) on [a,b].

Volumes

Disk Method: V=abπ[f(x)]2dxV = \int_a^b \pi[f(x)]^2 dx

Washer Method: V=abπ([f(x)]2[g(x)]2)dxV = \int_a^b \pi([f(x)]^2 - [g(x)]^2)dx

Shell Method: V=ab2πxh(x)dxV = \int_a^b 2\pi xh(x)dx or V=cd2πyw(y)dyV = \int_c^d 2\pi yw(y)dy

Arc Length

For y = f(x): L=ab1+[f(x)]2dxL = \int_a^b \sqrt{1 + [f'(x)]^2}dx

For parametric x(t), y(t): L=ab[x(t)]2+[y(t)]2dtL = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2}dt

Surface Area of Revolution

S=ab2πf(x)1+[f(x)]2dxS = \int_a^b 2\pi f(x)\sqrt{1 + [f'(x)]^2}dx

Work

W=abF(x)dxW = \int_a^b F(x)dx

Pressure and Force

F=abρh(x)w(x)dxF = \int_a^b \rho h(x)w(x)dx