Transport Equations

Theorem

Transport Equations — Convection, Diffusion, and Scalar Transport

Scope: unified derivation and analysis of scalar transport in fluids — including mass, momentum, energy, and species conservation. Covers convection–diffusion equations, dimensionless analysis, analytical solutions, and physical interpretation across regimes.


1. General Conservation Principle

For any conserved scalar quantity ϕ\phi (mass fraction, temperature, momentum component, etc.), the local conservation law over a control volume VV is: ddtVρϕdV+S(ρϕvΓϕ)ndA=VSφdV,\frac{d}{dt}\int_V \rho\phi\,dV + \oint_S (\rho\phi\mathbf{v} - \Gamma\nabla\phi)·\mathbf{n}\,dA = \int_V S_φ\,dV, where:

  • ρρ: density,
  • ΓΓ: diffusion coefficient (μ,kμ, k, or DD depending on context),
  • SφS_φ: volumetric source term.

Applying the divergence theorem and assuming constant ρρ: ρDφDt=(Γφ)+Sφ.ρ\frac{Dφ}{Dt} = ∇·(Γ∇φ) + S_φ. This is the general convection–diffusion (transport) equation.


2. Special Cases of φφ

QuantityφφDiffusion coefficient ΓΓSource term SφS_φ
Momentumuiu_iμμPressure gradient + body forces
Thermal energyTkViscous dissipation or heat generation
Species concentrationc_iρDiρD_iReaction rate rir_i

Thus, heat, mass, and momentum transport share a common mathematical structure.


3. One-Dimensional Steady Convection–Diffusion Equation

For steady 1D transport in the x-direction: ρudφdx=ddx(Γdφdx)+Sφ.ρu\frac{dφ}{dx} = \frac{d}{dx}\left(Γ\frac{dφ}{dx}\right) + S_φ.

3.1 Constant Properties and No Source

ρudφdx=Γd2φdx2.ρu\frac{dφ}{dx} = Γ\frac{d^2φ}{dx^2}.

Introduce Peclet number: Pe=ρuLΓ.Pe = \frac{ρuL}{Γ}.

Dimensionless form: d2φdx2Pedφdx=0.\frac{d^2φ^*}{dx^{*2}} - Pe\frac{dφ^*}{dx^*} = 0.

Solution: φ(x)=ePex1ePe1.φ^*(x^*) = \frac{e^{Pe x^*} - 1}{e^{Pe} - 1}.

LimitBehavior
Pe0Pe → 0Diffusion-dominated: linear profile
PePe → ∞Convection-dominated: sharp boundary layer

4. Diffusion Equation (Transient, No Convection)

φt=D2φ.\frac{∂φ}{∂t} = D ∇^2 φ.

4.1 1D Semi-Infinite Medium

Boundary conditions: φ(0,t)=φs,  φ(,t)=φφ(0,t)=φ_s, \; φ(∞,t)=φ_∞.

Solution: φ(x,t)=φ+(φsφ)erfc(x2Dt).φ(x,t) = φ_∞ + (φ_s - φ_∞)\,\mathrm{erfc}\left(\frac{x}{2√{Dt}}\right).

Characteristic diffusion length: δd(t)=Dt.δ_d(t) = √{Dt}.


5. Convective Heat and Mass Transfer in Boundary Layers

Energy equation in steady 2D flow: ρcp(uT/x+vT/y)=k2T/y2.ρc_p(u∂T/∂x + v∂T/∂y) = k ∂^2T/∂y^2.

Define local Nusselt number: Nux=hxxk=0.332Rex1/2Pr1/3(laminar flat plate).Nu_x = \frac{h_x x}{k} = 0.332 Re_x^{1/2} Pr^{1/3} \quad (\text{laminar flat plate}).

For mass transfer, Sherwood number: Shx=kmxD=0.332Rex1/2Sc1/3.Sh_x = \frac{k_m x}{D} = 0.332 Re_x^{1/2} Sc^{1/3}.

These arise directly from boundary-layer solutions of the convection–diffusion equation.


6. Dimensionless Form of the Transport Equation

Define characteristic scales: U,L,ΔφU, L, Δφ. Dimensionless variables: φ=φφ0Δφ,xi=xi/L,t=tU/L.φ^* = \frac{φ - φ_0}{Δφ}, \quad x_i^* = x_i/L, \quad t^* = tU/L.

Then: φt+v~iφxi=1Pe2φ+S~φ.\frac{∂φ^*}{∂t^*} + \tilde{v}_i \frac{∂φ^*}{∂x_i^*} = \frac{1}{Pe} ∇^{*2}φ^* + \tilde{S}_φ.

The single parameter Pe=UL/DPe = UL/D determines the dominant transport mechanism.


7. Analogy Between Transport Processes

The governing equations for heat, mass, and momentum are identical in form:

PropertyFluxConstitutive LawDiffusivity
Momentumτ=μdu/dyτ = μ du/dyNewton’s lawν=μ/ρν = μ/ρ
Heatq=kdT/dyq = -k dT/dyFourier’s lawα=k/(ρcp)α = k/(ρc_p)
Massj=ρDdy/dyj = -ρD dy/dyFick’s lawDD

Dimensionless ratios:

SymbolDefinitionInterpretation
Prν/αν/αMomentum vs. thermal diffusion
Scν/Dν/DMomentum vs. mass diffusion
Leα/Dα/DThermal vs. mass diffusion
PeReScRe·Sc or RePrRe·PrConvective vs. diffusive transport

8. Analytical Solutions to Canonical Problems

8.1 Steady Diffusion in a Slab (No Convection)

d2φdx2=0φ=A+Bx.\frac{d^2φ}{dx^2} = 0 \Rightarrow φ = A + Bx.

8.2 Cylindrical Coordinates (Radial Diffusion)

1rddr(rdφdr)=0φ=Alnr+B.\frac{1}{r} \frac{d}{dr}\left(r\frac{dφ}{dr}\right) = 0 \Rightarrow φ = A\ln r + B.

8.3 Spherical Coordinates

1r2ddr(r2dφdr)=0φ=A+Br.\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dφ}{dr}\right) = 0 \Rightarrow φ = A + \frac{B}{r}.

Used in heat conduction from cylinders/spheres and mass transfer around droplets.


9. Unsteady Convective Transport — Advection–Diffusion Equation

General form: φt+uφx=D2φx2.\frac{∂φ}{∂t} + u\frac{∂φ}{∂x} = D\frac{∂^2φ}{∂x^2}.

Solution via method of characteristics or Fourier transform: φ(x,t)=12πDtexp[(xut)24Dt].φ(x,t) = \frac{1}{2√{πDt}} \exp\left[-\frac{(x - ut)^2}{4Dt}\right].

Represents a Gaussian packet convected with velocity uu and spreading by diffusion.


10. Coupled Transport and Turbulent Diffusion

Reynolds decomposition for scalar quantity: φ=φˉ+φ.φ = \bar{φ} + φ'. Averaging: viφ=vˉiφˉviφ.\overline{v_i φ} = \bar{v}_i \bar{φ} - \overline{v_i'φ'}.

Define eddy diffusivity DtD_t: viφ=Dtφˉ/xi.-\overline{v_i'φ'} = D_t ∂\bar{φ}/∂x_i.

Effective diffusion coefficient: Deff=D+Dt.D_{eff} = D + D_t.

For turbulent heat and mass transfer: Dtνt1Prt1,Sct1.\frac{D_t}{ν_t} ≈ 1 \Rightarrow Pr_t ≈ 1, \quad Sc_t ≈ 1.


11. Boundary Conditions in Transport Problems

TypeMathematical formPhysical meaning
Dirichletφ=φsφ = φ_sPrescribed value (temperature/concentration)
Neumannφ/n=qs/Γ∂φ/∂n = q_s/ΓPrescribed flux
Robin (mixed)Γφ/n=h(φφ)-Γ∂φ/∂n = h(φ - φ_∞)Convective boundary
Symmetryφ/n=0∂φ/∂n = 0No gradient across centerline

12. Numerical Considerations (Conceptual Overview)

Finite-volume discretization in 1D steady convection–diffusion: aPφP=aEφE+aWφW+SP.a_P φ_P = a_E φ_E + a_W φ_W + S_P.

Coefficient definitions depend on differencing scheme:

SchemeAccuracyStabilityNotes
Central difference2nd orderUnstable for high PeSymmetric diffusion
Upwind1st orderAlways stableIntroduces numerical diffusion
Power-lawEmpiricalModerately stableBridges both regimes

Numerical Peclet number PeΔ=ρuΔx/ΓPe_Δ = ρuΔx/Γ determines discretization choice.


13. Asymptotic Behavior and Limiting Regimes

RegimeConditionDominant Mechanism
Diffusion-dominatedPe1Pe ≪ 1Nearly linear φφ profile
Convection-dominatedPe1Pe ≫ 1Thin boundary layer, steep gradients
Mixed regimePe1Pe ≈ 1Coupled transport

In high-Pe flows, analytical methods (boundary-layer or matched asymptotic expansions) describe steep concentration/temperature fronts.


14. Summary Equations

ConceptEquation
General transport lawρDφ/Dt=(Γφ)+Sφρ Dφ/Dt = ∇·(Γ∇φ) + S_φ
Diffusion equationφ/t=D2φ∂φ/∂t = D∇²φ
1D steady convection–diffusionρudφ/dx=Γd2φ/dx2ρu dφ/dx = Γ d²φ/dx²
Peclet numberPe=UL/DPe = UL/D
Nusselt numberNux=0.332Rex1/2Pr1/3Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}
Sherwood numberShx=0.332Rex1/2Sc1/3Sh_x = 0.332 Re_x^{1/2} Sc^{1/3}

  • 02_Boundary_Layers_and_Separation.md — boundary-layer convection–diffusion coupling.
  • Thermodynamics/10_NonEquilibrium_Thermodynamics.md — entropy generation and flux–force analogy.
  • 03_Numerical_Methods.md — finite-volume discretization and stability criteria for transport equations.