Navier Stokes Equation

Theorem
AliasesMomentum Equation
Discovered byClaude-Louis Navier, George Gabriel Stokes
ConditionsNewtonian Fluid, Continuum
Related data

Statement

The Navier-Stokes equations describe the motion of viscous fluid substances. They are derived by applying Newton’s second law to fluid motion, assuming the fluid stress is the sum of a diffusing viscous term and a pressure term.

Mathematical Form

For an incompressible Newtonian fluid: ρ(vt+(v)v)=p+μ2v+ρg\rho\left(\frac{\partial\mathbf{v}}{\partial t} + (\mathbf{v}\cdot\nabla)\mathbf{v}\right) = -\nabla p + \mu\nabla^2\mathbf{v} + \rho\mathbf{g}

where:

  • ρ\rho: Density
  • v\mathbf{v}: Velocity field
  • pp: Pressure
  • μ\mu: Dynamic viscosity
  • g\mathbf{g}: Body force (gravity)

Relationships