Turbulent Combustion

Phenomenon

Turbulent Combustion and Reactive Flows — Coupling of Chemistry, Transport, and Turbulence

Scope: rigorous treatment of chemically reactive turbulent flows, coupling fluid mechanics, transport, and thermodynamics. Covers governing equations, turbulence–chemistry interaction, statistical models (PDF, flamelet), and entropy/exergy aspects.


1. Governing Conservation Equations for Reactive Flows

Turbulent combustion involves the simultaneous conservation of mass, momentum, species, and energy. The instantaneous equations are:

1.1 Continuity

ρt+(ρv)=0.\frac{∂ρ}{∂t} + ∇·(ρ\mathbf{v}) = 0.

1.2 Momentum (Navier–Stokes)

ρDvDt=p+τ+ρg.ρ\frac{D\mathbf{v}}{Dt} = -∇p + ∇·\boldsymbol{τ} + ρ\mathbf{g}.

1.3 Species Conservation (for species i)

(ρYi)t+(ρYiv)=Ji+ω˙i,\frac{∂(ρY_i)}{∂t} + ∇·(ρY_i\mathbf{v}) = -∇·\mathbf{J}_i + \dot{ω}_i, where:

  • YiY_i: mass fraction of species i,
  • Ji=ρDiYi\mathbf{J}_i = -ρD_i∇Y_i: diffusive flux,
  • ω˙i\dot{ω}_i: chemical production rate (kg/m³·s).

1.4 Energy (Total or Enthalpy Form)

ρDhDt=DpDt+(kT)+ihiJi+q˙chem,ρ\frac{Dh}{Dt} = \frac{Dp}{Dt} + ∇·(k∇T) + ∑_i h_i ∇·\mathbf{J}_i + \dot{q}_{chem}, with q˙chem=ihiω˙i\dot{q}_{chem} = -∑_i h_i\dot{ω}_i (heat release by reactions).


2. Chemical Kinetics and Source Terms

2.1 Reaction Rate

For a generic reaction: iνiAiiνiAi,∑_i ν'_i A_i ⇌ ∑_i ν''_i A_i, reaction rate (mol/m³·s): ω˙r=kfi[Ci]νikbi[Ci]νi.\dot{ω}_r = k_f ∏_i [C_i]^{ν'_i} - k_b ∏_i [C_i]^{ν''_i}.

Temperature dependence (Arrhenius law): kf=ATneEa/(RT).k_f = A T^n e^{−E_a/(RT)}.

2.2 Species Source Term

ω˙i=Mir(νi,rνi,r)ω˙r.\dot{ω}_i = M_i ∑_r (ν''_{i,r} - ν'_{i,r})\dot{ω}_r.

2.3 Heat Release Rate

q˙chem=ihiω˙i=rΔHrω˙r.\dot{q}_{chem} = -∑_i h_i\dot{ω}_i = ∑_r ΔH_r\dot{ω}_r.


3. Turbulence–Chemistry Interaction: Averaging and Closure

For turbulent reacting flows, decompose using Reynolds or Favre (density-weighted) averaging: φ~=ρφρˉ,φ=φφ~.\tilde{φ} = \frac{\overline{ρφ}}{\bar{ρ}}, \quad φ'' = φ - \tilde{φ}.

Averaging species equation gives: (ρˉY~i)t+(ρˉY~iv~)=(ρˉYiv~)+ρˉω˙~i.\frac{∂(\bar{ρ}\tilde{Y}_i)}{∂t} + ∇·(\bar{ρ}\tilde{Y}_i\tilde{\mathbf{v}}) = -∇·(\bar{ρ} \widetilde{Y_i''\mathbf{v}''}) + \bar{ρ}\tilde{\dot{ω}}_i.

Unknown correlations Yiv~\widetilde{Y_i''\mathbf{v}''} and ω˙~i\tilde{\dot{ω}}_i require modeling — the core challenge of turbulence–chemistry closure.


4. Time-Scale Ratios and Regime Classification

Two fundamental time scales:

  • Turbulent mixing time: tt=k/εt_t = k/ε
  • Chemical time: tc=1/ω˙maxt_c = 1/\dot{ω}_{max}

4.1 Damköhler Number

Da=tttc=mixing timereaction time.Da = \frac{t_t}{t_c} = \frac{\text{mixing time}}{\text{reaction time}}.

  • Da1Da ≫ 1: fast chemistry (mixing-limited regime)
  • Da1Da ≪ 1: slow chemistry (kinetics-limited regime)

4.2 Karlovitz Number (Ka)

Ka=tηtc=ε1/2ν1/2ω˙c.Ka = \frac{t_η}{t_c} = \frac{ε^{1/2}}{ν^{1/2}\dot{ω}_c}.

  • Ka<1Ka < 1: flamelet regime (chemistry faster than smallest eddies)
  • Ka>1Ka > 1: distributed reaction regime (mixing dominates).

5. Regime Diagram (Peters’ Classification)

RegimeDamköhlerKarlovitzDescription
FlameletDa≫1, Ka<1Chemistry fast, thin flame sheet
Thin reaction zonesDa≈1, Ka≈1Partial disruption by turbulence
Distributed reactionDa≪1, Ka≫1Chemistry slow, volumetric reaction
Well-stirred reactorDa≪1Perfectly mixed turbulence

6. PDF Formulation and Closure

The probability density function (PDF) approach represents the distribution of scalar variables (species, temperature) within turbulent flow.

Define joint PDF P(ξ,t)P(ξ, t) where ξ=(Y1,Y2,T,...)ξ = (Y_1, Y_2, T, ...). The mean value of any function f(ξ)f(ξ): f~=f(ξ)P(ξ)dξ.\tilde{f} = ∫ f(ξ) P(ξ) dξ.

The PDF transport equation: (ρP)t+(ρv~P)=ξi(ξ˙iP)+Dmix,\frac{∂(ρP)}{∂t} + ∇·(ρ\tilde{\mathbf{v}}P) = -\frac{∂}{∂ξ_i}(\langle \dot{ξ}_i P\rangle) + D_{mix}, where DmixD_{mix} models micro-mixing between scalar states.

6.1 β-PDF for Mixture Fraction

For nonpremixed combustion, scalar fluctuations (mixture fraction Z) are well approximated by a β-distribution: P(Z)=Zα1(1Z)β1B(α,β).P(Z) = \frac{Z^{α−1}(1−Z)^{β−1}}{B(α,β)}.

Favre mean: Z~=α/(α+β)\tilde{Z} = α/(α+β), variance: Z2~=αβ/[(α+β)2(α+β+1)].\tilde{Z''^2} = αβ/[(α+β)^2(α+β+1)].


7. Flamelet Model for Nonpremixed Combustion

Assume thin flame sheets embedded within turbulent field. Chemistry is fast relative to turbulent fluctuations, so local flame structure ≈ laminar flame.

7.1 Mixture Fraction Coordinate

Define scalar ZZ (mass fraction of fuel): (ρZ)t+(ρZv)=(ρDZ).\frac{∂(ρZ)}{∂t} + ∇·(ρZ\mathbf{v}) = ∇·(ρD∇Z).

7.2 Flamelet Equation

ρχ/22φZ2=ω˙φ(T(Z),Yi(Z)),ρχ/2\frac{∂^2φ}{∂Z^2} = \dot{ω}_φ(T(Z), Y_i(Z)), where χ = scalar dissipation rate: χ=2DZ2.χ = 2D |∇Z|^2.

Flame structure depends only on ZZ and χχ; turbulent effects enter via PDF averaging.


8. Premixed Turbulent Combustion

For premixed flames, fuel and oxidizer are mixed before reaction.

Flame speed SLS_L enhanced by turbulence: ST=SL(1+u/SL)n.S_T = S_L(1 + u'/S_L)^{n}. Empirically, n0.51.0n ≈ 0.5–1.0, depending on regime.

Flame front modeled via level-set or G-equation: Gt+(v)G=SLG.\frac{∂G}{∂t} + (\mathbf{v}·∇)G = S_L|∇G|.


9. Eddy Dissipation Concept (EDC)

Proposed by Magnussen (1981) — reaction rate controlled by fine-scale turbulence: ω˙i=ρεkYiYi,eqτ,\dot{ω}_i = ρ\frac{ε}{k}\frac{Y_i - Y_{i,eq}}{τ^*}, where τ(k/ε)1/2τ^* ∼ (k/ε)^{1/2} is eddy turnover time.

Effective rate = min(chemical rate, turbulent rate). Suitable for CFD implementations with k–ε turbulence models.


10. Conditional Moment Closure (CMC)

Conditional averaging conditioned on scalar Z: YiZ,TZ.\langle Y_i | Z \rangle, \quad \langle T | Z \rangle.

Transport equation for conditional mean: ρDYiZDt=ρD2YiZ+ω˙iZ+M(Z),ρ\frac{D\langle Y_i | Z \rangle}{Dt} = ρD∇^2\langle Y_i | Z \rangle + \langle \dot{ω}_i | Z \rangle + M(Z), where M(Z)M(Z) is the micro-mixing term.

CMC bridges between detailed chemistry and turbulence statistics.


11. Heat Release, Density Fluctuations, and Flow Coupling

Heat release modifies density via equation of state: ρ=pMRT.ρ = \frac{pM}{RT}.

Buoyancy and expansion cause strong coupling between combustion and flow field — leading to flame stretch, wrinkling, and acoustic instabilities.


12. Entropy Generation and Exergy Destruction in Combustion

Total local entropy production: σs=q˙chemT+k(T)2T2+μ(v)2T.σ_s = \frac{\dot{q}_{chem}}{T} + \frac{k(∇T)^2}{T^2} + \frac{μ(∇v)^2}{T}.

Exergy destruction density: e˙D=T0σs.\dot{e}_D = T_0 σ_s.

Irreversibilities arise from:

  • Finite-rate chemistry (chemical irreversibility)
  • Thermal gradients (heat conduction)
  • Viscous dissipation (momentum diffusion)

These losses define the thermodynamic efficiency limits of combustion systems.


13. Turbulent Combustion Modeling in CFD

ModelPrincipleRegime of Validity
Eddy Break-Up (EBU)Reaction rate ∝ turbulence dissipationFast-chemistry (mixing-controlled)
FlameletPre-tabulated laminar flame libraryNonpremixed, Da≫1
PDFStatistical closure for chemistry and mixingAll regimes, detailed kinetics
EDCFinite-rate model using k–ε turbulenceModerate-to-high Re flames
CMCConditional averaging on mixture fractionGeneral, detailed but expensive

14. Example: Jet Flame Scaling

For turbulent nonpremixed jet flames: xfDRe1/2Sc1/2,LfRe1/2.x_f ∝ D Re^{1/2} Sc^{1/2}, \quad L_f ∝ Re^{1/2}.

Flame length scales with turbulent mixing rate; collapse occurs when chemistry time ≈ mixing time.


15. Summary Equations

ConceptEquation
Species conservation(ρYi)/t+(ρYiv)=Ji+ω˙i∂(ρY_i)/∂t + ∇·(ρY_i\mathbf{v}) = -∇·\mathbf{J}_i + \dot{ω}_i
Reaction rateω˙r=kf[Ci]νikb[Ci]νi\dot{ω}_r = k_f ∏[C_i]^{ν'_i} - k_b ∏[C_i]^{ν''_i}
Damköhler numberDa=tt/tcDa = t_t/t_c
Karlovitz numberKa=tη/tcKa = t_η/t_c
Scalar dissipation rate$χ = 2D
EDC rateω˙i=ρ(ε/k)(YiYi,eq)/τ\dot{ω}_i = ρ(ε/k)(Y_i - Y_{i,eq})/τ^*
Flamelet equationρχ/22φ/Z2=ω˙φρχ/2 ∂^2φ/∂Z^2 = \dot{ω}_φ
Entropy generationσs=q˙chem/T+k(T)2/T2+μ(v)2/Tσ_s = \dot{q}_{chem}/T + k(∇T)^2/T^2 + μ(∇v)^2/T

  • 04_Turbulence_and_Mixing.md — turbulent transport and diffusion fundamentals.
  • Thermodynamics/08_Chemical_Thermodynamics.md — equilibrium, Gibbs energy, and reaction spontaneity.
  • Thermodynamics/10_NonEquilibrium_Thermodynamics.md — entropy production in reactive systems.
  • Heat_Transfer/Combustion_Applications.md — radiative and convective heat transfer in flames.