The Finite Volume Method: Theory, Discretization, and General Relativistic Magnetohydrodynamics

Method

The Finite Volume Method

This document provides a comprehensive treatment of the Finite Volume Method (FVM), progressing from foundational continuum mechanics through classical CFD discretization to the full General Relativistic Magnetohydrodynamic (GRMHD) formulation. The hierarchy is organized such that simpler physics emerges as limiting cases of the general theory.


1. Foundations of Continuum Mechanics and Conservation Laws

The mathematical modeling of fluid mechanics and heat transfer rests upon conservation laws. Whether analyzing hypersonic re-entry or slow groundwater percolation, the governing physics remains invariant: mass is conserved, momentum follows Newton’s laws, and energy is transformed but never lost.

The Finite Volume Method (FVM) is distinguished by its direct derivation from integral conservation laws, rather than differential forms. This endows FVM with intrinsic robustness in preserving physical quantities locally and globally, making it the dominant framework in modern Computational Fluid Dynamics (CFD).

1.1 The Reynolds Transport Theorem

The bridge between a system (material volume) and a control volume (fixed in space) is the Reynolds Transport Theorem (RTT). For a scalar property ϕ\phi per unit mass:

DDtVsysρϕdV=tCVρϕdV+CSρϕ(vn)dA\frac{D}{Dt} \int_{V_{sys}} \rho \phi \, dV = \frac{\partial}{\partial t} \int_{CV} \rho \phi \, dV + \oint_{CS} \rho \phi (\mathbf{v} \cdot \mathbf{n}) \, dA

FVM starts directly from this integral form, ensuring discrete conservation even on coarse meshes.

1.2 The Navier-Stokes Equations in Integral Form

1.2.1 Conservation of Mass (Continuity)

Setting ϕ=1\phi = 1:

tΩρdΩ+Γρ(vn)dΓ=0\frac{\partial}{\partial t} \int_{\Omega} \rho \, d\Omega + \oint_{\Gamma} \rho (\mathbf{v} \cdot \mathbf{n}) \, d\Gamma = 0

For incompressible flow (ρ=const\rho = \text{const}), this enforces a divergence-free velocity field.

1.2.2 Conservation of Momentum

Setting ϕ=v\phi = \mathbf{v}:

tΩρvdΩ+Γρv(vn)dΓ=ΓτndΓΓpndΓ+ΩρgdΩ\frac{\partial}{\partial t} \int_{\Omega} \rho \mathbf{v} \, d\Omega + \oint_{\Gamma} \rho \mathbf{v} (\mathbf{v} \cdot \mathbf{n}) \, d\Gamma = \oint_{\Gamma} \boldsymbol{\tau} \cdot \mathbf{n} \, d\Gamma - \oint_{\Gamma} p \mathbf{n} \, d\Gamma + \int_{\Omega} \rho \mathbf{g} \, d\Omega

Momentum transport is both convective and diffusive.

1.2.3 General Scalar Transport Equation

All conservation laws may be written in unified form:

tΩρϕdΩTransient+Γρϕ(vn)dΓConvection=ΓΓϕϕndΓDiffusion+ΩSϕdΩSource\underbrace{\frac{\partial}{\partial t} \int_{\Omega} \rho \phi \, d\Omega}_{\text{Transient}} + \underbrace{\oint_{\Gamma} \rho \phi (\mathbf{v} \cdot \mathbf{n}) \, d\Gamma}_{\text{Convection}} = \underbrace{\oint_{\Gamma} \Gamma_\phi \nabla \phi \cdot \mathbf{n} \, d\Gamma}_{\text{Diffusion}} + \underbrace{\int_{\Omega} S_\phi \, d\Omega}_{\text{Source}}

The terms represent:

  • Transient: Rate of change of ϕ\phi inside the control volume. Set to 0 for steady-state.
  • Convection: Transport of ϕ\phi due to fluid velocity. Set to 0 for pure diffusion (e.g., solid conduction).
  • Diffusion: Transport of ϕ\phi due to gradients. Set to 0 for inviscid flows (Euler equations).
  • Source: Generation or destruction of ϕ\phi (e.g., chemical reaction, gravity, heat generation).

1.2.4 Application to Specific Conservation Laws

Conservation Lawϕ\phiΓϕ\Gamma_\phiSϕS_\phi
Mass (Continuity)100
xx-Momentumuuμ\mu (Viscosity)p/x+Fx-\partial p/\partial x + F_x
yy-Momentumvvμ\mu (Viscosity)p/y+Fy-\partial p/\partial y + F_y
Energyhh (Enthalpy)k/cpk/c_pViscous dissipation, radiation
Speciescc (Concentration)DD (Diffusivity)Reaction rate
Turbulence (kk-ε\varepsilon)k,εk, \varepsilonμt/σk,μt/σε\mu_t/\sigma_k, \mu_t/\sigma_\varepsilonProduction/Dissipation

2. Finite Volume Discretization Framework

FVM discretizes the control volume, ensuring that flux entering one cell exits its neighbor exactly (“telescoping flux”), guaranteeing global conservation.

2.1 Mesh Topologies and Geometric Definitions

2.1.1 Structured Grids

Implicit connectivity with efficient memory access, but difficult to generate for complex geometries.

2.1.2 Unstructured and Polyhedral Grids

Arbitrary polygons/polyhedra with connectivity stored explicitly:

  • Each face has Owner / Neighbor
  • High geometric flexibility
  • Higher memory and cache cost

2.1.3 Cell-Centered vs Cell-Vertex Formulations

  1. Cell-Centered FVM (CC-FVM): Variables at cell centroids (most commercial solvers)
  2. Cell-Vertex FVM (CV-FVM): Variables at vertices; dual mesh control volumes

2.2 Geometric Parameters and Surface Approximation

Surface integrals are approximated as:

ΓJndΓfJfSf\oint_{\Gamma} \mathbf{J} \cdot \mathbf{n} \, d\Gamma \approx \sum_f \mathbf{J}_f \cdot \mathbf{S}_f

Key mesh quality metrics:

  • Orthogonality: Alignment of face normal with cell-center connection
  • Skewness: Deviation of face center from intersection point

3. Convective Transport: High-Resolution Spatial Reconstruction

The key challenge is determining the face value ϕf\phi_f.

3.1 Upwind Differencing Scheme (UDS)

ϕf={ϕPFf0ϕNFf<0\phi_f = \begin{cases} \phi_P & F_f \ge 0 \\ \phi_N & F_f < 0 \end{cases}
  • First-order accurate
  • Unconditionally stable
  • Strong numerical diffusion

3.2 Central Differencing Scheme (CDS)

ϕf=fxϕP+(1fx)ϕN\phi_f = f_x \phi_P + (1 - f_x)\phi_N
  • Second-order accurate
  • Unbounded in convection-dominated flows

3.3 Godunov’s Theorem

No linear, second-order, monotone scheme exists.

3.4 TVD Schemes and Flux Limiters

ϕf=ϕUDS+12ψ(r)(ϕCDSϕUDS)\phi_f = \phi_{UDS} + \frac{1}{2}\psi(r)\left(\phi_{CDS} - \phi_{UDS}\right)

Gradient ratio:

r=ϕPϕupϕNϕPr = \frac{\phi_P - \phi_{up}}{\phi_N - \phi_P}

Common Limiters

LimiterFormula
Minmodψ(r)=max(0,min(1,r))\psi(r) = \max(0, \min(1, r))
Superbeeψ(r)=max(0,min(2r,1),min(r,2))\psi(r) = \max(0, \min(2r, 1), \min(r, 2))
Van Leer$\psi(r) = (r +

4. Diffusive Transport and Gradient Computation

4.1 Gradient Reconstruction Methods

4.1.1 Green-Gauss Method

(ϕ)P1VPfϕfSf(\nabla \phi)_P \approx \frac{1}{V_P} \sum_f \phi_f \mathbf{S}_f

Variants: Cell-based, Node-based

4.1.2 Least Squares Method

Assume linear variation:

ϕnbϕP+(ϕ)Pdnb\phi_{nb} \approx \phi_P + (\nabla \phi)_P \cdot \mathbf{d}_{nb}

Minimize:

E2=nbwnb[ϕnb(ϕP+ϕPdnb)]2E^2 = \sum_{nb} w_{nb} \left[\phi_{nb} - (\phi_P + \nabla \phi_P \cdot \mathbf{d}_{nb})\right]^2

4.2 Non-Orthogonal Correction

Decompose face area vector:

Sf=E+T\mathbf{S}_f = \mathbf{E} + \mathbf{T}

Diffusive flux:

ϕSfEϕNϕPd+(ϕ)fT\nabla \phi \cdot \mathbf{S}_f \approx |\mathbf{E}|\frac{\phi_N - \phi_P}{|\mathbf{d}|} + (\nabla \phi)_f \cdot \mathbf{T}

5. Temporal Evolution and Stability Analysis

5.1 Explicit Time Integration

Forward Euler:

ρV(ϕPn+1ϕPn)Δt=fFfn+SϕnV\frac{\rho V (\phi_P^{n+1} - \phi_P^n)}{\Delta t} = -\sum_f F_f^n + S_\phi^n V

CFL condition:

CFL=uΔtΔx1\text{CFL} = \frac{u \Delta t}{\Delta x} \le 1

5.1.1 Runge-Kutta Methods

  • Multi-stage explicit schemes
  • Large stability region
  • Favored in compressible flows

5.2 Implicit Time Integration

ρV(ϕPn+1ϕPn)Δt=fFfn+1+Sϕn+1V\frac{\rho V (\phi_P^{n+1} - \phi_P^n)}{\Delta t} = -\sum_f F_f^{n+1} + S_\phi^{n+1} V
  • Unconditionally stable
  • Requires matrix solvers (AMG)

6. Pressure-Velocity Coupling Algorithms

6.1 Rhie-Chow Interpolation

Prevents checkerboard pressure on collocated grids:

uf=uf+Df(pf(p)f)u_f = \overline{u_f} + \overline{D_f}\left(\overline{\nabla p}_f - (\nabla p)_f\right)

6.2 Segregated Solvers

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

  • Predictor-corrector loop
  • Requires under-relaxation

PISO (Pressure-Implicit with Splitting of Operators)

  • Two pressure correctors
  • Efficient for transient flows

7. Boundary Condition Implementation

General discretized equation:

aPϕP+nbanbϕnb=Sua_P \phi_P + \sum_{nb} a_{nb} \phi_{nb} = S_u

7.1 Dirichlet (Fixed Value)

Ghost-cell extrapolation:

ϕG=2ϕbϕP\phi_G = 2\phi_b - \phi_P

7.2 Neumann (Fixed Flux)

J=qfixedAJ = q_{\text{fixed}} A

Added directly to source term.

7.3 Robin (Mixed)

Example (convective heat transfer):

kTn=h(TbT)-k \frac{\partial T}{\partial n} = h (T_b - T_\infty)

Effective boundary temperature:

Tb=kTP+hdTk+hdT_b = \frac{k T_P + h d T_\infty}{k + h d}

7.4 Periodic Boundary Conditions

  • Implicit matrix coupling, or
  • Explicit ghost-cell mapping

8. The Arbitrary Lagrangian-Eulerian (ALE) Formulation

For problems involving moving boundaries (fluid-structure interaction, free surfaces), the formulation must account for control volume movement:

ddtΩ(t)ρϕdΩ+Ω(t)ρϕ(vvg)ndS=Ω(t)(Γϕ)ndS+Ω(t)SϕdΩ\frac{d}{dt}\int_{\Omega(t)} \rho\phi \, d\Omega + \oint_{\partial\Omega(t)} \rho\phi(\mathbf{v} - \mathbf{v}_g) \cdot \mathbf{n} \, dS = \oint_{\partial\Omega(t)} (\Gamma\nabla\phi) \cdot \mathbf{n} \, dS + \int_{\Omega(t)} S_\phi \, d\Omega

Where vg\mathbf{v}_g is the mesh velocity:

  • If vg=0\mathbf{v}_g = 0: Eulerian (fixed grid)
  • If vg=v\mathbf{v}_g = \mathbf{v}: Lagrangian (grid moves with fluid)

9. Special Relativistic Magnetohydrodynamics (SRMHD)

When fluid velocities approach the speed of light, standard conservation laws must be modified to account for relativistic effects.

9.1 Flat Spacetime Assumptions

Spacetime is Minkowski (flat): gμν=ημν=diag(1,1,1,1)g_{\mu\nu} = \eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)

Implications:

  • Lapse α=1\alpha = 1
  • Shift βi=0\beta^i = 0
  • Determinant γ=1\gamma = 1
  • All Christoffel symbols Γμνλ=0\Gamma^\lambda_{\mu\nu} = 0
  • Geometric source terms vanish

9.2 The Lorentz Factor

W=11v2/c2W = \frac{1}{\sqrt{1 - v^2/c^2}}

This accounts for time dilation and length contraction.

9.3 Relativistic Velocity Addition

Standard addition fails for relativistic speeds. The correct formula:

λlab=vfluid+λ1+vfluidλ/c2\lambda_{\text{lab}} = \frac{v_{\text{fluid}} + \lambda'}{1 + v_{\text{fluid}}\lambda'/c^2}

This guarantees λlab<c\lambda_{\text{lab}} < c when both component velocities are subluminal.

9.4 Conservation Laws in SRMHD

Mass conservation:

Dt+(Dv)=0\frac{\partial D}{\partial t} + \nabla \cdot (D \mathbf{v}) = 0

where D=ρWD = \rho W is the relativistic mass density.


10. Newtonian Magnetohydrodynamics

10.1 Limiting Conditions

  1. Weak Gravity: α1\alpha \approx 1, βi0\beta^i \approx 0
  2. Non-Relativistic Velocities: vcv \ll c, implying W1W \approx 1
  3. Rest-Mass Dominance: Pρc2P \ll \rho c^2, B2ρc2B^2 \ll \rho c^2

10.2 Recovered Equations

Continuity:

tρ+(ρv)=0\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0

Momentum (Cauchy):

t(ρv)+(ρvv)=P+J×B+ρg\partial_t(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) = -\nabla P + \mathbf{J} \times \mathbf{B} + \rho \mathbf{g}

Energy:

ENewt12ρv2+ρϵ+B22E_{\text{Newt}} \approx \frac{1}{2}\rho v^2 + \rho \epsilon + \frac{B^2}{2}

Induction:

tB=×(v×B)\partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B})

10.3 The Magnetic Divergence Constraint

B=0\nabla \cdot \mathbf{B} = 0

This constraint must be maintained numerically to avoid unphysical magnetic monopoles.


11. General Relativistic Magnetohydrodynamics (GRMHD)

GRMHD combines fluid dynamics, electromagnetism, and general relativity. It is used to simulate accretion disks around black holes, neutron star mergers, and relativistic jets.

11.1 The 3+1 Formalism

The numerical evolution of relativistic fields requires breaking four-dimensional covariance using the Arnowitt-Deser-Misner (ADM) formalism, which foliates spacetime into three-dimensional spatial hypersurfaces Σt\Sigma_t evolving in time.

11.1.1 The ADM Metric

ds2=α2dt2+γij(dxi+βidt)(dxj+βjdt)ds^2 = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt)(dx^j + \beta^j dt)

Geometric Variables:

  1. Lapse Function (α\alpha): Relates coordinate time to proper time, dτ=αdtd\tau = \alpha dt. Encapsulates gravitational redshift.

  2. Shift Vector (βi\beta^i): Describes relative motion between spatial coordinates and Eulerian observers. Essential for frame-dragging in rotating spacetimes.

  3. Spatial Metric (γij\gamma_{ij}): Measures distances within the three-dimensional hypersurface.

11.1.2 The Eulerian Observer

The four-velocity of the Eulerian observer (at rest relative to the spatial slice):

nμ=1α(1,βi),nμ=(α,0,0,0)n^\mu = \frac{1}{\alpha} (1, -\beta^i), \quad n_\mu = (-\alpha, 0, 0, 0)

The metric determinants are related by: g=αγ\sqrt{-g} = \alpha \sqrt{\gamma}

11.2 The Stress-Energy Tensor

11.2.1 Perfect Fluid

Tfluidμν=ρhuμuν+PgμνT^{\mu\nu}_{\text{fluid}} = \rho h u^\mu u^\nu + P g^{\mu\nu}

where h=1+ϵ+P/ρh = 1 + \epsilon + P/\rho is the specific enthalpy.

11.2.2 Electromagnetic Field (Ideal MHD)

TEMμν=b2uμuν+12b2gμνbμbνT^{\mu\nu}_{\text{EM}} = b^2 u^\mu u^\nu + \frac{1}{2}b^2 g^{\mu\nu} - b^\mu b^\nu

where bμb^\mu is the magnetic field four-vector and b2=bμbμb^2 = b^\mu b_\mu.

11.2.3 Total Stress-Energy Tensor

Tμν=(ρh+b2)uμuν+(P+12b2)gμνbμbνT^{\mu\nu} = (\rho h + b^2) u^\mu u^\nu + \left(P + \frac{1}{2}b^2\right)g^{\mu\nu} - b^\mu b^\nu

The magnetic field contributes:

  • Effective enthalpy (b2b^2 term)
  • Isotropic magnetic pressure (b2/2b^2/2)
  • Anisotropic magnetic tension (bμbν-b^\mu b^\nu)

11.3 The Valencia Formulation (Flux-Conservative Form)

Ut+Fixi=S\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}^i}{\partial x^i} = \mathbf{S}

11.3.1 Conserved Variables

U=γ[DSjτBk]\mathbf{U} = \sqrt{\gamma} \begin{bmatrix} D \\ S_j \\ \tau \\ B^k \end{bmatrix}

where:

Relativistic Mass Density:

D=ρWD = \rho W

Momentum Density:

Sj=(ρh+b2)W2vjαb0bjS_j = (\rho h + b^2) W^2 v_j - \alpha b^0 b_j

Energy Density (minus rest mass):

τ=(ρh+b2)W2(P+12b2)α2(b0)2D\tau = (\rho h + b^2) W^2 - \left(P + \frac{1}{2}b^2\right) - \alpha^2 (b^0)^2 - D

11.3.2 Flux Vectors

Fi=γ[D(viβi/α)Sj(viβi/α)+Ptotδjibibj/W2τ(viβi/α)+Ptotviαb0bi/W2Bi(viβi/α)Bj(vjβj/α)]\mathbf{F}^i = \sqrt{\gamma} \begin{bmatrix} D (v^i - \beta^i / \alpha) \\ S_j (v^i - \beta^i / \alpha) + P_{\text{tot}} \delta^i_j - b^i b_j / W^2 \\ \tau (v^i - \beta^i / \alpha) + P_{\text{tot}} v^i - \alpha b^0 b^i / W^2 \\ B^i (v^i - \beta^i / \alpha) - B^j (v^j - \beta^j / \alpha) \end{bmatrix}

where Ptot=P+b2/2P_{\text{tot}} = P + b^2/2 is the total pressure.

11.3.3 Geometric Source Terms

S=γ[012αTμνjgμν+Skjβk(τ+D)jααTμννnμ0]\mathbf{S} = \sqrt{\gamma} \begin{bmatrix} 0 \\ \frac{1}{2} \alpha T^{\mu\nu} \partial_j g_{\mu\nu} + S_k \partial_j \beta^k - (\tau + D) \partial_j \alpha \\ \alpha T^{\mu\nu} \nabla_\nu n_\mu \\ 0 \end{bmatrix}

The source terms arise from Christoffel symbols and represent the exchange of momentum and energy between matter and the gravitational field.

11.4 The Simplification Hierarchy

To Recover…Set…Result
SRMHDα=1\alpha=1, βi=0\beta^i=0, γij=δij\gamma_{ij}=\delta_{ij}Minkowski (Flat) Space
Newtonian MHDvcv \ll c, Pρc2P \ll \rho c^2, W1W \to 1Standard Ideal MHD
Navier-StokesB=0B=0, add viscosityCompressible NS
Euler EquationsViscosity 0\to 0Compressible Euler
Heat Equationv=0v=0, Sgeom=0S_{\text{geom}}=0Pure Diffusion

12. Constrained Transport for the Magnetic Field

12.1 The Divergence Constraint Problem

Numerical truncation errors introduce B0\nabla \cdot \mathbf{B} \neq 0, creating unphysical magnetic monopoles that cause simulation instability.

12.2 Staggered Grid Variable Placement

  • Cell Centers (i,j,k)(i,j,k): Volume-averaged quantities (DD, PP, τ\tau)
  • Face Centers (i+1/2,j,k)(i+1/2, j, k): Area-averaged magnetic flux (BxB^x on xx-face)
  • Edge Centers (i+1/2,j+1/2,k)(i+1/2, j+1/2, k): Line-averaged EMF (Ez\mathcal{E}^z on zz-edge)

12.3 The Flux Update via Stokes’ Theorem

The evolution of magnetic flux Φ\Phi through a face is governed by Faraday’s Law:

ΦBt=FaceEdl\frac{\partial \Phi_B}{\partial t} = -\oint_{\partial\text{Face}} \mathbf{E} \cdot d\mathbf{l}

For the xx-face:

Bi+1/2,j,kxt=(Ei+1/2,j+1/2,kzEi+1/2,j1/2,kzΔyEi+1/2,j,k+1/2yEi+1/2,j,k1/2yΔz)\frac{\partial B^x_{i+1/2,j,k}}{\partial t} = -\left( \frac{\mathcal{E}^z_{i+1/2,j+1/2,k} - \mathcal{E}^z_{i+1/2,j-1/2,k}}{\Delta y} - \frac{\mathcal{E}^y_{i+1/2,j,k+1/2} - \mathcal{E}^y_{i+1/2,j,k-1/2}}{\Delta z} \right)

12.4 Computing the Relativistic EMF

In curved spacetime:

Ei=ϵijk(αvjβj)Bk\mathcal{E}_i = \epsilon_{ijk}(\alpha v^j - \beta^j)B^k

where:

  • αvj\alpha v^j: Fluid velocity scaled by time dilation
  • βj\beta^j: Coordinate grid sliding speed (shift vector)

13. Riemann Solvers for Relativistic MHD

13.1 The Relativistic Wave Fan

When two cells with different states touch, they generate a fan of 7 waves:

  1. Fast Magnetosonic Waves (Left & Right)
  2. Alfven Waves (Left & Right)
  3. Slow Magnetosonic Waves (Left & Right)
  4. Contact Discontinuity (Center)

13.2 The HLL Solver

Assumes only two waves separating Left and Right states:

FHLL=λRFLλLFR+λLλR(URUL)λRλL\mathbf{F}_{\text{HLL}} = \frac{\lambda_R \mathbf{F}_L - \lambda_L \mathbf{F}_R + \lambda_L \lambda_R (\mathbf{U}_R - \mathbf{U}_L)}{\lambda_R - \lambda_L}
  • Very diffusive (lumps intermediate waves)
  • Extremely stable
  • Preserves positivity of density and pressure

13.3 The HLLD Solver (5-Wave Model)

Approximates the Riemann fan with five waves:

  1. Fast Shocks (λL\lambda_L, λR\lambda_R): Outermost waves at relativistic fast magnetosonic speed
  2. Alfven Waves (λL\lambda_L^*, λR\lambda_R^*): Rotational discontinuities where magnetic field direction changes
  3. Contact Discontinuity (λM\lambda_M): Central wave where density changes but pressure is continuous

The HLLD solver provides significantly lower dissipation than HLL while maintaining stability.

13.4 Causality Enforcement

Wave speeds are calculated using relativistic eigenvalues that guarantee subluminal propagation:

λlab=v+λ1+vλ/c2\lambda_{\text{lab}} = \frac{v + \lambda'}{1 + v\lambda'/c^2}

14. Primitive Variable Recovery (Con2Prim)

14.1 The Inversion Problem

The evolution updates conserved variables U=(D,Sj,τ,Bk)\mathbf{U} = (D, S_j, \tau, B^k), but flux calculation requires primitive variables P=(ρ,vi,P,Bk)\mathbf{P} = (\rho, v^i, P, B^k).

The inverse mapping requires solving transcendental equations for the Lorentz factor:

f(W)=W11S2(ρhW2)2=0f(W) = W - \frac{1}{\sqrt{1 - \frac{S^2}{(\rho h W^2)^2}}} = 0

Newton-Raphson iteration is standard.

14.2 Floors and Fail-Safes

If the solver fails or returns negative pressure/density:

  1. Variables reset to “atmosphere” values (small positive density/pressure)
  2. Momentum rescaled to maintain subluminal velocity (v<1v < 1)

15. Equations of State

15.1 Gamma-Law (Ideal Gas)

P=(Γ1)ρϵP = (\Gamma - 1)\rho \epsilon
  • Γ=4/3\Gamma = 4/3: Radiation-dominated gas
  • Γ=5/3\Gamma = 5/3: Non-relativistic gas

15.2 Hybrid EoS

Combines “cold” nuclear physics (tabulated) with “thermal” ideal gas for shock heating. Used in neutron star mergers.

15.3 Tabulated EoS

Large lookup tables including neutrino cooling and nuclear composition. Required for microphysical accuracy.


16. Time Integration for GRMHD

16.1 Explicit Runge-Kutta

Standard choices: SSP-RK3 (Strong Stability Preserving) or RK4.

  • Efficient
  • Limited by CFL condition

16.2 IMEX Schemes

For resistive GRMHD with stiff source terms:

  • Stiff terms treated implicitly
  • Flux terms remain explicit

17. Adaptive Mesh Refinement (AMR)

GRMHD simulations span vast dynamic ranges (event horizon to jet lobes). AMR creates hierarchies of nested grids.

Challenge: Maintaining B=0\nabla \cdot \mathbf{B} = 0 across refinement boundaries requires divergence-preserving prolongation operators.


18. Advanced Topics

18.1 WENO on Unstructured Meshes

  • Arbitrarily high order
  • Nonlinear stencil weighting
  • Shock-capturing with low dissipation

18.2 Machine Learning Accelerated FVM

  • ML replaces turbulence closures
  • Conservation laws enforced by FVM structure
  • Neural networks as constitutive models

18.3 The Israel-Stewart Formulation (Viscous Relativistic Fluids)

Standard viscosity violates causality in relativity. The Israel-Stewart formulation elevates the viscous stress tensor to a dynamic variable:

τππ˙μν+πμν=2ησμν\tau_\pi \dot{\pi}^{\mu\nu} + \pi^{\mu\nu} = -2\eta \sigma^{\mu\nu}

Taking τπ0\tau_\pi \to 0 recovers the relativistic Navier-Stokes structure.


References

  1. 3+1 formalism and bases of numerical relativity - Observatoire de Paris, https://people-lux.obspm.fr/gourgoulhon/pdf/form3p1.pdf
  2. Introduction to GRMHD - Einstein Toolkit, https://einsteintoolkit.github.io/et2021uiuc/lectures/21-VassiliosMewes/slides.pdf
  3. General-relativistic Resistive Magnetohydrodynamics - Research Explorer, https://pure.uva.nl/ws/files/45365323/General_relativistic_Resistive_Magnetohydrodynamics.pdf
  4. A five-wave HLL Riemann solver for relativistic MHD - arXiv, https://arxiv.org/abs/0811.1483
  5. The Black Hole Accretion Code: adaptive mesh refinement and constrained transport, https://d-nb.info/1363398083/34
  6. IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes, https://par.nsf.gov/servlets/purl/10293408
  7. Theories of Relativistic Dissipative Fluid Dynamics - MDPI, https://www.mdpi.com/1099-4300/26/3/189