Two Phase Heat Transfer

Concept

Two-Phase Heat Transfer and Critical Flow — Flow Boiling, Choking, and Pressure Drop Analysis

Scope: comprehensive treatment of two-phase flow thermohydraulics. Covers mixture formulations, void fraction and drift flux, two-phase pressure drop, flow boiling and condensation, and critical mass flux phenomena.


1. Two-Phase Flow Modeling Framework

1.1 Definitions

  • Quality (x): mass fraction of vapor x=m˙vm˙l+m˙v.x = \frac{\dot{m}_v}{\dot{m}_l + \dot{m}_v}.
  • Void fraction (α): volumetric vapor fraction α=VvVl+Vv.α = \frac{V_v}{V_l + V_v}.
  • Slip ratio (S): ratio of phase velocities S=vvvl.S = \frac{v_v}{v_l}.

Relation between xx and αα: α=x/ρvx/ρv+(1x)/ρlS.α = \frac{x/ρ_v}{x/ρ_v + (1-x)/ρ_l S}.

1.2 Mixture Properties

  • Density: ρm=αρv+(1α)ρl.ρ_m = α ρ_v + (1-α) ρ_l.
  • Viscosity (approx.): μm=αμv+(1α)μl.μ_m = α μ_v + (1-α) μ_l.
  • Specific enthalpy: hm=(1x)hl+xhv.h_m = (1-x)h_l + xh_v.

2. Two-Fluid and Homogeneous Mixture Models

2.1 Two-Fluid (Separated) Model

Conservation equations written for each phase: (αkρk)/t+(αkρkvk)=Γk,∂(α_kρ_k)/∂t + ∇·(α_kρ_k\mathbf{v}_k) = Γ_k, (αkρkvk)/t+(αkρkvkvk)=αkp+(αkτk)+αkρkg+Mk.∂(α_kρ_k\mathbf{v}_k)/∂t + ∇·(α_kρ_k\mathbf{v}_k\mathbf{v}_k) = -α_k∇p + ∇·(α_k\boldsymbol{τ}_k) + α_kρ_k\mathbf{g} + \mathbf{M}_k. Interfacial momentum term Mk\mathbf{M}_k provides coupling between phases.

2.2 Homogeneous Equilibrium Model (HEM)

Assumes: vv=vl=vm,  Tv=Tl=Tsatv_v = v_l = v_m,\; T_v = T_l = T_{sat}. Single mixture equation set: (ρm)/t+(ρmvm)=0.∂(ρ_m)/∂t + ∇·(ρ_m\mathbf{v}_m) = 0. (ρmvm)/t+(ρmvmvm)=p+(μmvm)+ρmg.∂(ρ_m\mathbf{v}_m)/∂t + ∇·(ρ_m\mathbf{v}_m\mathbf{v}_m) = -∇p + ∇·(μ_m∇\mathbf{v}_m) + ρ_m\mathbf{g}.

2.3 Homogeneous Nonequilibrium Model (HNE)

Includes relaxation between phase velocities and pressures — used near critical flow and flashing.


3. Drift Flux Model

Proposed by Zuber & Findlay (1965) to correlate void fraction and phase velocities: j=αvv+(1α)vl=C0jm+Vgj,j = α v_v + (1-α)v_l = C_0 j_m + V_{gj}, where:

  • C0C_0: distribution parameter (1.0–1.3)
  • VgjV_{gj}: drift velocity (slip between phases)
  • jm=G/ρmj_m = G/ρ_m: mixture velocity.

Void fraction: α=C0jm+Vgjvv+Vgj.α = \frac{C_0 j_m + V_{gj}}{v_v + V_{gj}}.


4. Two-Phase Pressure Drop

Total pressure gradient: dpdz=(dpdz)fric+(dpdz)grav+(dpdz)acc.\frac{dp}{dz} = \left(\frac{dp}{dz}\right)_{fric} + \left(\frac{dp}{dz}\right)_{grav} + \left(\frac{dp}{dz}\right)_{acc}.

4.1 Gravitational Component

(dpdz)grav=ρmg.\left(\frac{dp}{dz}\right)_{grav} = ρ_m g.

4.2 Accelerational Component

(dpdz)acc=G2ddz(x2ρv+(1x)2ρl).\left(\frac{dp}{dz}\right)_{acc} = G^2 \frac{d}{dz}\left(\frac{x^2}{ρ_v} + \frac{(1-x)^2}{ρ_l}\right).

4.3 Frictional Component

Friction factor defined via two-phase multiplier Φ2Φ^2: (dpdz)tp=Φ2(dpdz)lo,\left(\frac{dp}{dz}\right)_{tp} = Φ^2 \left(\frac{dp}{dz}\right)_{lo}, where (dp/dz)lo(dp/dz)_{lo} is the liquid-only pressure drop.


5. Lockhart–Martinelli Correlation (1949)

Defines Martinelli parameter: X=[(dp/dz)lo(dp/dz)vo]1/2=(μl/μv(ρv/ρl)2x2(1x)2)1/2.X = \left[\frac{(dp/dz)_{lo}}{(dp/dz)_{vo}}\right]^{1/2} = \left(\frac{μ_l/μ_v}{(ρ_v/ρ_l)^2}\frac{x^2}{(1-x)^2}\right)^{1/2}.

Two-phase multipliers: Φl2=1+C/X+1/X2,Φv2=1+CX+X2.Φ_l^2 = 1 + C/X + 1/X^2, \quad Φ_v^2 = 1 + CX + X^2.

Empirical constant C:

Flow typeC
Laminar–Laminar5
Laminar–Turbulent10
Turbulent–Turbulent20

6. Flow Boiling Heat Transfer

Heat transfer in two-phase forced convection arises from both convection and phase change: q=htp(TwTsat).q'' = h_{tp} (T_w - T_{sat}).

6.1 Chen Correlation

Combines nucleate and convective contributions: htp=Shpool+Fhconv.h_{tp} = S h_{pool} + F h_{conv}.

Where:

  • SS: suppression factor (accounts for vapor turbulence)
  • FF: enhancement factor (two-phase convection)

6.2 Kandlikar Correlation (1983)

htp=C1RelC2BoC3(ρlρv)C4kl/Dh,h_{tp} = C_1 Re_l^{C_2} Bo^{C_3} (\frac{ρ_l}{ρ_v})^{C_4} k_l/D_h, where Bo=q/(Ghfg)Bo = q''/(Gh_{fg}) is the boiling number.


7. Two-Phase Condensation Heat Transfer

Condensation in tubes may occur in annular or stratified flow.

7.1 Cavallini–Zecchin Correlation

htp=hlo(1+3.8Bo0.76),h_{tp} = h_{lo} (1 + 3.8 Bo^{0.76}), with hloh_{lo} as liquid-only Nusselt convection coefficient.

7.2 Film Condensation with Shear

Nutp=0.943(RelPrl)1/3(ρl/ρv)1/4.Nu_{tp} = 0.943 (Re_l Pr_l)^{1/3} (ρ_l/ρ_v)^{1/4}.


8. Critical Flow and Choking

Occurs when mass flux GG reaches a maximum with respect to downstream pressure.

8.1 Isentropic Criterion

(Gp2)p1=0.\left(\frac{∂G}{∂p_2}\right)_{p_1} = 0.

For compressible single-phase: m˙=ρAc,c=γRT.\dot{m} = ρ A c, \quad c = \sqrt{γRT}.

8.2 Homogeneous Equilibrium Model (HEM) Critical Flow

Assumes thermal and mechanical equilibrium: Gcrit=2(pupd)vd2vu2.G_{crit} = \sqrt{\frac{2(p_u - p_d)}{v_d^2 - v_u^2}}.

For isentropic expansion: Gcrit[2ρl(pupv)1+(ρl/ρv)(hfg/cl2)]1/2.G_{crit} ≈ \left[ \frac{2ρ_l (p_u - p_v)}{1 + (ρ_l/ρ_v)(h_{fg}/c_l^2)} \right]^{1/2}.

8.3 Nonequilibrium Flashing (HNE)

Includes metastable superheated liquid and relaxation: Gcrit=GHEM(1+Krelax)1/2.G_{crit} = G_{HEM} (1 + K_{relax})^{-1/2}.


9. Empirical Critical Flow Correlations

ModelFormulationApplication
Moody (1965)G=Cρl(Δp/ρl)1/2G = C ρ_l (Δp/ρ_l)^{1/2}Short nozzles, water
Henry–Fauske (1971)Semi-empirical, includes slip and non-equilibriumReactor safety
Leung–MoodyG=K(pinpout)0.5G = K (p_{in}-p_{out})^{0.5}Flashing liquids

10. Two-Phase Pressure Drop and Heat Transfer Maps

Lockhart–Martinelli coordinates used to correlate boiling and condensation transitions.

10.1 Flow Pattern Maps

Plot superficial velocities jg,jlj_g, j_l:

  • Bubbly → Slug → Annular → Mist

Transition lines defined by void fraction and Weber number criteria: We=ρU2Dσ.We = \frac{ρU^2D}{σ}.


11. Entropy Generation and Efficiency

Entropy generation in two-phase flow: σs=k(τk:vkTk+kk(Tk)2Tk2+JmμkTk).σ_s = \sum_k \left( \frac{\boldsymbol{τ}_k:∇v_k}{T_k} + \frac{k_k(∇T_k)^2}{T_k^2} + \frac{J_m·∇μ_k}{T_k} \right).

Flow boiling irreversibility dominated by phase slip, viscous dissipation, and interfacial heat transfer across finite ΔTΔT.

Exergy destruction: E˙D=T0σsV.\dot{E}_D = T_0 σ_s V.


12. Typical Correlations Summary

QuantityCorrelationNotes
Pressure dropLockhart–Martinelli, FriedelFriction multiplier models
Heat transfer (boiling)Chen, KandlikarConvective + nucleate terms
CondensationCavallini–ZecchinFilmwise, annular
Critical flowHenry–FauskeNon-equilibrium flashing
Void fractionZuber–FindlayDrift-flux model

  • 07_Boiling_and_Condensation.md — detailed nucleate and film heat transfer mechanisms.
  • 06_Multiphase_Flows_and_Bubble_Dynamics.md — phase transport and Rayleigh–Plesset formulation.
  • Thermodynamics/10_NonEquilibrium_Thermodynamics.md — entropy production and coupling.
  • Heat_Transfer/TwoPhase_Design_Methods.md — practical design and numerical methods for two-phase systems.