Potential Viscous Flows

Concept

Potential and Viscous Flows — Irrotational and Laminar Regimes

Scope: rigorous development of potential flow theory and exact viscous solutions of the Navier–Stokes equations. Includes velocity potential formulation, vorticity dynamics, laminar shear and pressure-driven flows, creeping motion, and transition toward turbulence.


1. Irrotational Flow and the Velocity Potential

For inviscid and irrotational flow: ×v=0.\nabla\times\mathbf{v} = 0. Then v\mathbf{v} can be represented as a gradient of a scalar potential: v=ϕ.\mathbf{v} = \nabla\phi.

For incompressible flow (v=0\nabla\cdot\mathbf{v}=0): 2ϕ=0.\nabla^2 \phi = 0. This is Laplace’s equation, governing potential flow.


2. Streamfunction and Complex Potential

In 2D incompressible flow, define a streamfunction ψ\psi: u=ψ/y,v=ψ/x.u = \partial\psi/\partial y, \quad v = -\partial\psi/\partial x.

Velocity potential ϕ\phi and streamfunction ψ\psi satisfy the Cauchy–Riemann relations: ϕx=ψy,ϕy=ψx.\frac{\partial\phi}{\partial x} = \frac{\partial\psi}{\partial y}, \quad \frac{\partial\phi}{\partial y} = -\frac{\partial\psi}{\partial x}.

Thus, define a complex potential: W(z)=ϕ+iψ,z=x+iy.W(z) = \phi + i\psi, \quad z = x + iy.

The derivative gives complex velocity: w=uiv=dWdz.w = u - iv = \frac{dW}{dz}. Superposition of elementary potentials yields complex flow fields.


3. Elementary Potential Flows

Flow TypePotential FunctionStreamfunctionComments
Uniform flowϕ=Ux\phi = Uxψ=Uy\psi = UyConstant velocity
Source (strength Q)ϕ=Q2πlnr\phi = \frac{Q}{2\pi} \ln rψ=Q2πθ\psi = \frac{Q}{2\pi}\thetaRadial outflow
SinkNegative of sourceConvergent flow
Doublet (limit of source-sink pair)ϕ=μcosθ2πr\phi = -\frac{\mu \cos \theta}{2\pi r}ψ=μsinθ2πr\psi = -\frac{\mu \sin \theta}{2\pi r}Models solid body
Vortex (circulation Γ\Gamma)ϕ=Γ2πθ\phi = \frac{\Gamma}{2\pi}\thetaψ=Γ2πlnr\psi = -\frac{\Gamma}{2\pi}\ln rTangential velocity

Superposition yields more complex flows: flow past a cylinder, airfoil approximations (Joukowski transform), etc.


4. Bernoulli’s Equation for Potential Flow

From Euler’s equation for inviscid flow: ρDvDt=p+ρg.\rho\frac{D\mathbf{v}}{Dt} = -\nabla p + \rho\mathbf{g}. For steady, irrotational flow, integrate along a streamline: pρ+v22+gz=constant.\frac{p}{\rho} + \frac{v^2}{2} + gz = \text{constant}.

For compressible flow: p1p2dpρ+v22v122+g(z2z1)=0.\int_{p_1}^{p_2}\frac{dp}{\rho} + \frac{v_2^2 - v_1^2}{2} + g(z_2 - z_1) = 0.


5. Vorticity Dynamics and Circulation

Vorticity ω=×v\boldsymbol{\omega} = \nabla\times\mathbf{v}. For inviscid, barotropic flow: DωDt=(ω)v.\frac{D\boldsymbol{\omega}}{Dt} = (\boldsymbol{\omega}\cdot\nabla)\mathbf{v}.

5.1 Kelvin’s Circulation Theorem

For inviscid, conservative body forces: DΓDt=0,Γ=Cvds.\frac{D\Gamma}{Dt} = 0, \quad \Gamma = \oint_C \mathbf{v}\cdot d\mathbf{s}.

Circulation is conserved; vortex lines move with the fluid.


6. Exact Viscous Flow Solutions (Steady, Laminar Regimes)

Consider the incompressible Navier–Stokes equations: ρ(v)v=p+μ2v.\rho(\mathbf{v}\cdot\nabla)\mathbf{v} = -\nabla p + \mu\nabla^2\mathbf{v}.

At low Reynolds numbers, inertial terms are small: 0=p+μ2v.0 = -\nabla p + \mu\nabla^2\mathbf{v}. These are Stokes flow equations.

6.1 Plane Couette Flow

Between plates separated by distance hh; top plate moves with velocity UU. Assume vx=u(y),vy=0v_x = u(y), v_y = 0: 0=μd2udy2,u(0)=0,  u(h)=U.0 = \mu \frac{d^2u}{dy^2}, \quad u(0)=0, \; u(h)=U. Solution: u(y)=Uyh.u(y) = U\frac{y}{h}.

Shear stress: τ=μU/h\tau = \mu U/h (uniform across gap).


6.2 Plane Poiseuille Flow

Pressure-driven flow between stationary plates: dpdx=μd2udy2.\frac{dp}{dx} = \mu\frac{d^2u}{dy^2}. With u(±h)=0u(\pm h)=0: u(y)=12μdpdx(y2h2).u(y) = \frac{1}{2\mu}\frac{dp}{dx}(y^2 - h^2).

Maximum velocity: umax=12μdpdxh2.u_{max} = -\frac{1}{2\mu}\frac{dp}{dx}h^2.

Volumetric flow rate: Q=2h33μdpdx.Q = -\frac{2h^3}{3\mu}\frac{dp}{dx}.


6.3 Hagen–Poiseuille Flow (Circular Pipe)

For fully developed laminar pipe flow: dpdz=μ(1rddr(rdudr)).\frac{dp}{dz} = \mu\left(\frac{1}{r}\frac{d}{dr}\left(r\frac{du}{dr}\right)\right). Boundary: u(R)=0u(R)=0, symmetry du/dr=0du/dr=0 at r=0r=0.

Solution: u(r)=14μdpdz(r2R2).u(r) = \frac{1}{4\mu}\frac{dp}{dz}(r^2 - R^2).

Volumetric flow: Q=πR48μdpdz.Q = -\frac{\pi R^4}{8\mu}\frac{dp}{dz}. Average velocity uˉ=Q/(πR2)=R28μdpdz.\bar{u} = Q/(\pi R^2) = -\frac{R^2}{8\mu}\frac{dp}{dz}.


6.4 Stokes’ First Problem (Unsteady Plate Motion)

At t=0t=0, plate at y=0y=0 suddenly moves at speed UU in stationary fluid. Governing equation: ut=ν2uy2,u(0,t)=U,u(,t)=0.\frac{\partial u}{\partial t} = \nu\frac{\partial^2 u}{\partial y^2}, \quad u(0,t)=U, u(\infty,t)=0.

Solution (error function form): u(y,t)=Uerfc(y2νt).u(y,t) = U\,\mathrm{erfc}\left(\frac{y}{2\sqrt{\nu t}}\right). Velocity decays exponentially with yy.


6.5 Stokes’ Second Problem (Oscillating Wall)

Wall oscillates as u(0,t)=U0eiωtu(0,t)=U_0 e^{i\omega t}. Solution: u(y,t)=U0eiωty/δ,δ=2ν/ω.u(y,t) = U_0 e^{i\omega t - y/\delta}, \quad \delta = \sqrt{2\nu/\omega}. This defines the viscous penetration depth.


7. Creeping Flow Around a Sphere (Stokes Flow)

Steady low-Re flow around sphere of radius aa; boundary conditions: ur=Ucosθ(13a2r+a32r3),uθ=Usinθ(13a4ra34r3).u_r = U\cos\theta\left(1 - \frac{3a}{2r} + \frac{a^3}{2r^3}\right), \quad u_\theta = -U\sin\theta\left(1 - \frac{3a}{4r} - \frac{a^3}{4r^3}\right).

Pressure field: pp=3μUa2r2cosθ.p - p_\infty = -\frac{3\mu U a}{2r^2}\cos\theta.

Total drag force: FD=6πμaU.F_D = 6\pi\mu aU.

This is Stokes’ law, valid for Re=ρUa/μ1.Re = \rho U a/\mu \ll 1.


8. Energy Dissipation in Laminar Flow

Viscous dissipation per unit volume: Φ=2μeijeij.\Phi = 2\mu e_{ij}e_{ij}. Total mechanical energy balance: t(ρv22)+(pv)=Φ(qmech).\frac{\partial}{\partial t}\left(\frac{\rho v^2}{2}\right) + \nabla\cdot(p\mathbf{v}) = -\Phi - \nabla\cdot(\mathbf{q}_{mech}).

For steady Poiseuille flow, total head loss equals energy dissipated by viscous forces.


9. Transition from Laminar to Turbulent Flow

Laminar flow becomes unstable when inertial forces overcome viscous damping.

  • Characterized by Reynolds number: Re=ρUL/μ.Re = \rho UL/\mu.
  • Pipe flow transition at Recr2300.Re_{cr} \approx 2300.

Perturbation amplification governed by linear stability analysis: ddt(δv)=L(δv).\frac{d}{dt}(\delta\mathbf{v}) = \mathcal{L}(\delta\mathbf{v}). When eigenvalues of operator L\mathcal{L} have positive real parts \to instability.


10. Potential vs. Viscous Flow Summary

FeaturePotential FlowViscous Flow
Governing eq.Laplace (2ϕ=0\nabla^2\phi=0)Navier–Stokes
AssumptionsInviscid, irrotationalNewtonian viscosity
DissipationNoneFinite (μ>0\mu>0)
Flow typeIdeal (no drag)Real (with drag)
ExamplesFlow over airfoil (lift)Poiseuille, Couette

D’Alembert’s paradox: potential flow predicts zero drag—resolved only when viscosity (boundary layer separation) is included.


11. Summary Equations

EquationExpressionDescription
Laplace equation2ϕ=0\nabla^2\phi = 0Incompressible potential flow
Bernoullip/ρ+v2/2+gz=constp/\rho + v^2/2 + gz = \text{const}Energy balance along streamline
Navier–StokesρDv/Dt=p+μ2v\rho Dv/Dt = -\nabla p + \mu\nabla^2 vViscous flow dynamics
Stokes flow0=p+μ2v0 = -\nabla p + \mu\nabla^2 vCreeping flow (Re1Re \ll 1)
Stokes’ dragFD=6πμaUF_D = 6\pi\mu aULow-Re sphere drag
PoiseuilleQ=πR4Δp/(8μL)Q = \pi R^4\Delta p/(8\mu L)Laminar pipe flow rate

  • fundamentals.md — conservation laws and Navier–Stokes derivation.
  • 02_Boundary_Layers_and_Separation.md — viscous–inviscid interaction and drag mechanisms.
  • Thermodynamics/10_NonEquilibrium_Thermodynamics.md — entropy generation due to viscous dissipation.