Nuclear Propulsion

Concept

Nuclear and Electrical Propulsion — High-Specific-Impulse Systems and Energy Conversion Physics

Scope: advanced nonchemical propulsion based on nuclear and electrical energy sources. Covers thermodynamics, plasma acceleration, electromagnetic coupling, and exergy analysis.


1. Overview

1.1 Motivation

Chemical propulsion is limited by chemical bond energy (~10 MJ/kg). Nuclear and electrical propulsion decouple energy density from reaction enthalpy, enabling higher specific impulse (Isp) at lower thrust-to-weight ratios.

1.2 Categories

TypeEnergy SourceWorking PrincipleTypical Isp (s)
Nuclear ThermalFission heatThermal expansion of hydrogen800–1000
Nuclear ElectricFission → electric → ion accelerationElectric propulsion2000–10000
ElectrothermalResistive or plasma heatingThermal acceleration400–1200
ElectrostaticIon acceleration by E-fieldCoulomb acceleration1000–10000
ElectromagneticLorentz force (J×B)Plasma current acceleration1500–10000

2. Nuclear Thermal Propulsion (NTP)

2.1 Principle

A nuclear reactor heats hydrogen propellant to high temperature; gas expands through a nozzle to produce thrust: F=m˙Ve+(pep0)Ae.F = \dot{m} V_e + (p_e - p_0)A_e.

2.2 Reactor Thermodynamics

Heat generation rate: Q˙f=Pth=ΣfφVEfkeff,Q̇_f = P_{th} = \frac{Σ_f φ V E_f}{k_{eff}}, where:

  • ΣfΣ_f: macroscopic fission cross-section
  • φφ: neutron flux
  • EfE_f: energy per fission (~200 MeV)

2.3 Energy Conversion

The propellant is heated directly by conduction/convection from the reactor fuel elements: Q˙=m˙cp(TexitTinlet).Q̇ = \dot{m} c_p (T_{exit} - T_{inlet}).

For steady operation: Texit=Twall,maxqδkfuel.T_{exit} = T_{wall,max} - \frac{q'' δ}{k_{fuel}}.

2.4 Performance

Exhaust velocity: Ve=2γγ1RTe(1(pe/pc)(γ1)/γ).V_e = \sqrt{\frac{2γ}{γ-1} R T_e \left(1 - (p_e/p_c)^{(γ-1)/γ}\right)}.

With hydrogen (low molecular weight), IspI_{sp} exceeds 900 s for Te27003000K.T_e ≈ 2700–3000 K.

2.5 Reactor Design

  • Solid-core: fuel elements conduct heat to H₂ (e.g., NERVA).
  • Gas-core: uranium plasma radiatively heats H₂ (Isp ≈ 1500–2000 s).
  • Liquid-core: molten fuel increases heat transfer rate.

3. Nuclear Electric Propulsion (NEP)

3.1 Concept

Nuclear reactor generates thermal power → converted to electrical power → drives electric thrusters.

3.2 Power Conversion Cycles

CycleDescriptionEfficiency
BraytonClosed gas turbine25–35%
RankineVapor cycle with condenser20–30%
ThermoelectricSolid-state Seebeck devices5–10%
ThermionicDirect electron emission10–20%

Total electrical power: Pe=ηconvPth.P_e = η_{conv} P_{th}.

3.3 Coupled Thrust Relation

F=2ηtPeVe.F = 2 η_t \frac{P_e}{V_e}.

Higher exhaust velocity reduces thrust for given power.


4. Electrothermal Propulsion

4.1 Resistojets

Propellant heated resistively (e.g., ammonia, hydrazine, water vapor): Te=Theater,maxqδkwall.T_e = T_{heater,max} - \frac{q'' δ}{k_{wall}}.

Performance: Isp=Veg0=1g02γRTeγ1(1(pe/pc)(γ1)/γ).I_{sp} = \frac{V_e}{g_0} = \frac{1}{g_0}\sqrt{\frac{2γRT_e}{γ-1}\left(1 - (p_e/p_c)^{(γ-1)/γ}\right)}.

4.2 Arcjets

Electric arc directly heats the propellant plasma → Te40006000KT_e ≈ 4000–6000 K. Hydrogen arcjets: Isp8001200I_{sp} ≈ 800–1200 s.

4.3 Microwave and RF Heaters

Electromagnetic energy absorbed by plasma resonance modes; used for non-contact propellant heating in advanced electrothermal thrusters.


5. Electrostatic Propulsion

5.1 Ion Thruster Principles

Ions accelerated by electric field through grids: F=m˙iVe=2IbVam˙i.F = \dot{m}_i V_e = \frac{2I_b V_a}{\dot{m}_i}.

Ion acceleration energy: eVa=12miVe2.eV_a = \frac{1}{2}m_i V_e^2.

Where VaV_a is accelerating voltage and IbI_b the beam current.

5.2 Space-Charge Limitation

Child–Langmuir law for space-charge-limited current density: J=4ε092emiVa3/2d2.J = \frac{4ε_0}{9} \sqrt{\frac{2e}{m_i}} \frac{V_a^{3/2}}{d^2}.

5.3 Neutralization

Electrons from cathode neutralize ion beam to prevent spacecraft charging.

5.4 Performance

Isp=Veg0=1g02eVami.I_{sp} = \frac{V_e}{g_0} = \frac{1}{g_0}\sqrt{\frac{2eV_a}{m_i}}. Typical IspI_{sp}: 2000–4000 s.

Efficiency: ηt=m˙Ve2/2Pinput.η_t = \frac{\dot{m}V_e^2/2}{P_{input}}.


6. Hall-Effect Thrusters (HET)

6.1 Basic Mechanism

Electrons confined by radial magnetic field BB and axial electric field EE. The E×BE×B drift creates azimuthal current; ions accelerated axially.

Lorentz force: F=q(E+v×B).\mathbf{F} = q(\mathbf{E} + \mathbf{v}×\mathbf{B}).

6.2 Discharge Physics

Quasi-neutral plasma, with potential drop across acceleration zone (~300 V). Ions accelerated; electrons trapped by BB field → efficient momentum transfer.

6.3 Efficiency

ηH=ηiηcηd,η_H = η_i η_c η_d, where:

  • ηiη_i: ionization efficiency
  • ηcη_c: current utilization
  • ηdη_d: divergence efficiency

Typical ηH0.60.7,Isp15002500s.η_H ≈ 0.6–0.7, I_{sp} ≈ 1500–2500 s.


7. Electromagnetic Propulsion

7.1 Magnetoplasmadynamic (MPD) Thrusters

Use Lorentz force on plasma current: F=VJ×BdV.\mathbf{F} = \int_V \mathbf{J}×\mathbf{B}\,dV.

7.2 Current and Magnetic Field Relations

For self-field MPD thruster: F=μ0I24πrckf,F = \frac{μ_0 I^2}{4π r_c} k_f, where kfk_f depends on geometry and current distribution.

Power balance: P=IV,ηt=FVe/2P.P = IV, \quad η_t = \frac{F V_e / 2}{P}.

7.3 Performance

IspI_{sp} up to 6000 s, thrust density 10–100 N/m².

7.4 Pulsed Plasma Thrusters (PPT)

Capacitor discharge ablates solid Teflon, producing plasma plume. Suitable for micropropulsion.


8. Exergy and Efficiency Analysis

8.1 Energy Flow Diagram

QfissionPthPelecPlasma AccelerationF.Q_{fission} → P_{th} → P_{elec} → \text{Plasma Acceleration} → F.

8.2 Exergy Destruction

E˙D=T0S˙gen=T0(S˙reactor+S˙converter+S˙thruster).\dot{E}_D = T_0 \dot{S}_{gen} = T_0 (\dot{S}_{reactor} + \dot{S}_{converter} + \dot{S}_{thruster}).

Major sources:

  • Thermal gradients in reactor/converter
  • Resistive heating in power electronics
  • Plasma wave-particle collisions

8.3 Exergy Efficiency

ηex=m˙Ve2/2E˙nuclear.η_{ex} = \frac{\dot{m}V_e^2/2}{\dot{E}_{nuclear}}.

Typical system-level ηexη_{ex}: 0.1–0.3 (including all conversion losses).


9. Comparison of Propulsion Modes

SystemEnergy SourceThrust (N)Isp (s)EfficiencyNotes
Chemical RocketChemical10⁵–10⁶300–4500.6–0.7High thrust, low Isp
Nuclear ThermalFission heat10⁴–10⁵800–10000.7–0.8Mars transit feasible
Ion ThrusterElectric0.1–12000–40000.6–0.7Deep space missions
Hall ThrusterElectric0.05–51500–25000.6Common on satellites
MPD ThrusterElectric1–1002000–60000.4–0.6High power, low lifetime

10. System Integration and Power-to-Thrust Coupling

For electric propulsion: F=2ηtPeVe.F = 2 η_t \frac{P_e}{V_e}. Tradeoff: increasing IspI_{sp} (large VeV_e) reduces FF for fixed power.

Optimal mission design selects IspI_{sp} minimizing total propellant mass: ddIsp(mp+mpower)=0.\frac{d}{dI_{sp}} (m_p + m_{power}) = 0.


11. Advanced Concepts

11.1 Fusion-Based Propulsion

Direct energy conversion from D–³He or D–T reactions to charged-particle thrust. Theoretical Isp>105I_{sp} > 10^5 s, but plasma confinement remains unsolved challenge.

11.2 Antimatter Catalysis

Positron or antiproton annihilation initiates fission/fusion — speculative, extremely high energy density (~9×10¹⁶ J/kg).

11.3 Beamed Energy Propulsion

External power source (laser/microwave) transfers energy to onboard receiver or plasma sail; eliminates onboard reactor mass.


12. Key Performance Equations

ConceptEquationNotes
Exhaust velocityVe=2ηtPe/m˙V_e = \sqrt{2η_t P_e/\dot{m}}Electric thruster scaling
Specific impulseIsp=Ve/g0I_{sp} = V_e/g_0Propellant efficiency
ThrustF=2ηtPe/VeF = 2η_t P_e/V_ePower–thrust coupling
Child–Langmuir currentJ=(4ε0/9)2e/miV3/2/d2J = (4ε_0/9)\sqrt{2e/m_i} V^{3/2}/d^2Ion space-charge limit
Lorentz forceF=J×BdVF = \int J×B\,dVMPD acceleration
Reactor heat balanceQ˙=m˙cpΔTQ̇ = \dot{m}c_pΔTNTP core energy transfer
Exergy efficiencyηex=(Ve2/2)/ψnuclearη_{ex} = (V_e^2/2)/ψ_{nuclear}Overall system performance

  • Fluid_Dynamics/13_Rocket_Propulsion_and_Chemical_Performance.md — chemical propulsion fundamentals.
  • Thermodynamics/10_NonEquilibrium_Thermodynamics.md — entropy and exergy coupling.
  • Heat_Transfer/Nuclear_Systems.md — reactor heat transport.
  • Plasma_Physics/01_Fundamentals.md — Debye shielding, sheath formation, and plasma dynamics.