Multiphase Flows

Concept

Multiphase Flows and Bubble Dynamics — Interfacial Transport and Continuum Formulation

Scope: from first principles of continuum mechanics and thermodynamics to engineering models for multiphase systems. Includes two-fluid modeling, interfacial transfer laws, nucleation thermodynamics, and bubble dynamics.


1. Nature and Classification of Multiphase Flow

A multiphase flow involves more than one thermodynamic phase (gas, liquid, or solid) coexisting with distinct interfaces. Classification:

TypeExamplesDescription
Gas–LiquidBubbly, slug, annularCavitation, boiling, reactors
Liquid–SolidSlurries, sedimentationSuspensions, crystallization
Gas–SolidFluidized bedsPneumatic conveying
Three-phaseOil–gas–waterReactors, extraction

Topologically, systems may be dispersed (one phase as particles, droplets, or bubbles in a continuous medium) or separated (distinct regions divided by interfaces).


2. Continuum Formulation — Volume Averaging

Each phase kk occupies a local volume fraction αkα_k, with kαk=1.\sum_k α_k = 1.

For any extensive quantity ψkψ_k: ψ=1VVkψkdV.⟨ψ⟩ = \frac{1}{V} ∫_{V_k} ψ_k dV.

2.1 Averaged Continuity

(αkρk)t+(αkρkvk)=Γk,\frac{∂(α_k ρ_k)}{∂t} + ∇·(α_k ρ_k \mathbf{v}_k) = Γ_k, where ΓkΓ_k is the mass transfer rate between phases (e.g., evaporation/condensation).

2.2 Averaged Momentum

(αkρkvk)/t+(αkρkvkvk)=αkpk+(αkτk)+αkρkg+Mk,∂(α_k ρ_k \mathbf{v}_k)/∂t + ∇·(α_k ρ_k \mathbf{v}_k\mathbf{v}_k) = -α_k ∇p_k + ∇·(α_k \boldsymbol{τ}_k) + α_k ρ_k \mathbf{g} + \mathbf{M}_k, where Mk\mathbf{M}_k is the interfacial momentum exchange (drag, lift, virtual mass, etc.).

2.3 Averaged Energy

(αkρkhk)/t+(αkρkhkvk)=αkDpkDt+(αkkkTk)+Qk,∂(α_k ρ_k h_k)/∂t + ∇·(α_k ρ_k h_k \mathbf{v}_k) = α_k \frac{Dp_k}{Dt} + ∇·(α_k k_k ∇T_k) + Q_k, with QkQ_k representing interfacial and volumetric heat transfer.


3. Interfacial Area and Exchange Mechanisms

Define interfacial area concentration ai=Ai/Va_i = A_i/V (m²/m³).

Interphase exchange terms: Mk=ai(pini+τi),Qk=aiqi,Γk=aiji.\mathbf{M}_k = a_i (p_i \mathbf{n}_i + \boldsymbol{τ}_i), \quad Q_k = a_i q_i, \quad Γ_k = a_i j_i.

3.1 Momentum Transfer

Dominated by drag force: FD=12CDρcApurur,\mathbf{F}_D = \frac{1}{2} C_D ρ_c A_p |\mathbf{u}_r|\mathbf{u}_r, where ur=vdvc\mathbf{u}_r = \mathbf{v}_d - \mathbf{v}_c.

Empirical drag coefficient (for bubbles): CD=24Rep(1+0.15Rep0.687),Rep=ρcdpurμc.C_D = \frac{24}{Re_p}(1 + 0.15Re_p^{0.687}), \quad Re_p = \frac{ρ_c d_p |\mathbf{u}_r|}{μ_c}.

Other forces: lift, virtual mass, wall lubrication.

3.2 Heat and Mass Transfer

Interfacial heat flux: qi=hi(TsT).q_i = h_i (T_s - T_∞). Mass flux due to phase change: ji=βi(ρsρ).j_i = β_i (ρ_s - ρ_∞). Correlations depend on regime (nucleate, film, condensation, evaporation).


4. Surface Tension and Interfacial Pressure

Surface tension arises from molecular imbalance across the interface.

4.1 Laplace Pressure Relation

Δp=pinpout=2σ/R,Δp = p_{in} - p_{out} = 2σ/R, where σσ is surface tension and RR is bubble radius.

4.2 Capillary Number

Ca=μUσ.Ca = \frac{μU}{σ}. Low CaCa: surface tension dominates (small-scale flows); high CaCa: inertia/viscosity dominates.


5. Thermodynamics of Nucleation

Formation of a new phase nucleus requires work against surface tension and volume free energy.

Gibbs free energy change for a spherical nucleus: ΔG=4πr2σ43πr3Δp,ΔG = 4πr^2σ - \frac{4}{3}πr^3Δp, with Δp=pvplΔp = p_v - p_l.

Critical radius: r=2σΔp.r^* = \frac{2σ}{Δp}. Activation barrier: ΔG=16πσ33(Δp)2.ΔG^* = \frac{16πσ^3}{3(Δp)^2}.

Nucleation rate: J=J0exp(ΔG/kT).J = J_0 \exp(-ΔG^*/kT).

5.1 Heterogeneous Nucleation

Occurs on walls or impurities, reducing effective barrier by a factor f(θ)f(θ) dependent on contact angle θθ.


6. Bubble Dynamics — Rayleigh–Plesset Equation

A single spherical bubble in an infinite liquid obeys: RR¨+32R˙2=1ρl[pBp2σ/R4μlR˙/R].R \ddot{R} + \frac{3}{2} \dot{R}^2 = \frac{1}{ρ_l} [p_B - p_∞ - 2σ/R - 4μ_l \dot{R}/R].

Where:

  • RR: instantaneous bubble radius,
  • pBp_B: internal pressure (vapor + gas),
  • pp_∞: far-field pressure.

6.1 Static Equilibrium

pB=p+2σ/R0.p_B = p_∞ + 2σ/R_0.

6.2 Oscillatory Dynamics

Linearizing about equilibrium gives natural frequency (Minnaert, 1933): fn=12πR03γpρl.f_n = \frac{1}{2πR_0} \sqrt{\frac{3γp_∞}{ρ_l}}.

6.3 Collapse Dynamics

If external pressure suddenly rises (p>pBp_∞>p_B): RR¨+32R˙2=1ρl(pBp).R\ddot{R} + \frac{3}{2}\dot{R}^2 = \frac{1}{ρ_l}(p_B - p_∞). Solution predicts violent collapse, relevant to cavitation erosion.


7. Cavitation and Condensation Phenomena

7.1 Cavitation Inception

Occurs when local static pressure drops below vapor pressure.

Cavitation number: σc=ppv0.5ρU2.σ_c = \frac{p_∞ - p_v}{0.5ρU^2}. Smaller σcσ_c → higher likelihood of cavitation.

7.2 Cavitation Damage

Bubble collapse near surfaces generates microjets and shock waves → material erosion, noise, vibration.

7.3 Condensation Shock

In high-speed vapor flows, phase change occurs abruptly — requiring coupled mass, momentum, and energy analysis.


8. Flow Regimes in Gas–Liquid Systems

RegimeVoid Fraction RangeDescription
Bubbly<0.25Discrete spherical bubbles
Slug0.25–0.6Large bullet-shaped bubbles
Churn0.6–0.8Unstable coalescence/breakup
Annular>0.8Continuous gas core, liquid film

Transition determined by coalescence, breakup, and surface tension forces.


9. Population Balance and Interfacial Area Transport

Population balance for number density n(v,t)n(v,t) of dispersed elements (volume v): nt+(nv)=BD,\frac{∂n}{∂t} + ∇·(n\mathbf{v}) = B - D, where BB and DD are birth and death terms due to coalescence and breakup.

Mean interfacial area evolution: DaiDt=SbreakScoal+Snuc.\frac{Da_i}{Dt} = S_{break} - S_{coal} + S_{nuc}.

Statistical closure achieved via empirical or mechanistic kernel functions (Smoluchowski framework).


10. Heat and Mass Transfer in Bubbly Flows

Heat transfer coefficient around single bubble: Nu=2+0.6Re1/2Pr1/3.Nu = 2 + 0.6 Re^{1/2} Pr^{1/3}. Mass transfer (Sherwood number): Sh=2+0.6Re1/2Sc1/3.Sh = 2 + 0.6 Re^{1/2} Sc^{1/3}.

Ensemble-averaged volumetric rate: Q=aihi(TlTv).Q = a_i h_i (T_l - T_v).


11. Noncondensable Gases and Stability Effects

Presence of a noncondensable gas alters bubble oscillations and collapse severity (increased compressibility, reduced collapse pressure). Gas diffusion across interface may control long-term bubble stability.


12. Entropy Production and Irreversibility

Local entropy generation in multiphase flow: σs=k[τk:vkTk+kk(Tk)2Tk2+JmassμTk].σ_s = \sum_k \left[ \frac{\boldsymbol{τ}_k : ∇\mathbf{v}_k}{T_k} + \frac{k_k (∇T_k)^2}{T_k^2} + \frac{J_{mass}·∇μ}{T_k} \right].

Cavitation, boiling, and condensation all generate entropy through irreversible phase change and viscous dissipation.


13. Typical Engineering Correlations

PhenomenonCorrelationValidity
Drag coefficientCD=24/Rep(1+0.15Rep0.687)C_D = 24/Re_p(1+0.15Re_p^{0.687})Re<1000
Void fraction (homogeneous model)α=Qg/(Qg+Ql)α = Q_g/(Q_g+Q_l)Low slip ratio
Slip ratio (drift flux)VgVl=C0Jm+VgjV_g - V_l = C_0 J_m + V_{gj}Bubbly, slug flow
Cavitation inceptionσc=(ppv)/(0.5ρU2)σ_c = (p_∞ - p_v)/(0.5ρU^2)Hydraulic systems

  • 05_Turbulent_Combustion_and_Reactive_Flows.md — multiphase combustion, sprays, vaporization.
  • Thermodynamics/09_Phase_Transitions_and_Critical_Phenomena.md — nucleation and criticality.
  • Heat_Transfer/Boiling_and_Condensation.md — interfacial heat transfer and phase-change kinetics.
  • Thermodynamics/10_NonEquilibrium_Thermodynamics.md — entropy production across interfaces.