Jet Propulsion

Concept

Propulsion and Jet Engines — Thermodynamics, Fluid Dynamics, and Cycle Analysis

Scope: a first-principles treatment of airbreathing propulsion systems. Includes thrust generation, turbojet/turbofan cycles, performance metrics, and thermodynamic irreversibility.


1. Fundamentals of Propulsive Flow

1.1 Control Volume Formulation

For a steady one-dimensional flow through a propulsion device: F=m˙(VeV0)+(pep0)Ae.F = \dot{m}(V_e - V_0) + (p_e - p_0)A_e.

Where:

  • FF: net thrust
  • V0V_0: freestream velocity
  • VeV_e: exhaust velocity
  • pe,Aep_e, A_e: exit static pressure and area

If pep0p_e ≈ p_0, pressure thrust is negligible: Fm˙(VeV0).F ≈ \dot{m}(V_e - V_0).

1.2 Energy Balance

Total energy change per unit mass: h0=h+V22=constant (adiabatic flow).h_0 = h + \frac{V^2}{2} = \text{constant (adiabatic flow)}.

Propulsive power: P=FV0.P = F V_0.


2. Specific Impulse and Efficiency Metrics

2.1 Specific Impulse

Isp=Fm˙fg0.I_{sp} = \frac{F}{\dot{m}_f g_0}.

2.2 Thrust Specific Fuel Consumption (TSFC)

TSFC=m˙fF.\text{TSFC} = \frac{\dot{m}_f}{F}.

2.3 Propulsive Efficiency

ηp=2V0Ve+V0.η_p = \frac{2V_0}{V_e + V_0}.

Maximum ηpη_p when VeV0V_e ≈ V_0 — thus high mass flow, low jet velocity engines (turbofans) are more efficient.

2.4 Overall Efficiency

ηo=ηpηth.η_o = η_p η_{th}. Where ηthη_{th} is thermal efficiency of the cycle.


3. The Ideal Brayton Cycle for Jet Propulsion

3.1 Process Steps

  1. Isentropic compression in inlet and compressor.
  2. Constant-pressure heat addition in combustor.
  3. Isentropic expansion in turbine and nozzle.

Thermal efficiency: ηth=11rp(γ1)/γ,η_{th} = 1 - \frac{1}{r_p^{(γ-1)/γ}}, where rp=p2/p1r_p = p_2/p_1 is compressor pressure ratio.

3.2 Jet Velocity and Thrust

From energy conservation: Ve2V022=cpT0(ηoverall)(1T4/T0).\frac{V_e^2 - V_0^2}{2} = c_p T_0 (η_{overall})(1 - T_4/T_0).


4. Turbojet Engine

4.1 Configuration

  • Diffuser → Compressor → Combustor → Turbine → Nozzle.

4.2 Thrust Equation

F=m˙a(VeV0)+(pep0)Ae.F = \dot{m}_a (V_e - V_0) + (p_e - p_0)A_e.

For ideal expansion pe=p0p_e = p_0: F=m˙a(VeV0).F = \dot{m}_a (V_e - V_0).

4.3 Energy Flow

Compressor work: wc=cp(Tt2Tt1).w_c = c_p (T_{t2} - T_{t1}). Turbine work: wt=cp(Tt3Tt4).w_t = c_p (T_{t3} - T_{t4}). Combustor heat addition: qadd=cp(Tt3Tt2).q_{add} = c_p (T_{t3} - T_{t2}).

Turbine drives compressor: wt=wc.w_t = w_c.

4.4 Efficiency Relations

Thermal efficiency: ηth=1Tt4Tt1Tt3Tt2.η_{th} = 1 - \frac{T_{t4} - T_{t1}}{T_{t3} - T_{t2}}. Overall efficiency: ηo=FV0m˙fqadd.η_o = \frac{F V_0}{\dot{m}_f q_{add}}.


5. Turbofan Engine

5.1 Bypass Concept

A turbofan divides airflow into:

  • Core stream (through turbine and nozzle)
  • Bypass stream (fan-accelerated air)

Bypass ratio ββ: β=m˙bypassm˙core.β = \frac{\dot{m}_{bypass}}{\dot{m}_{core}}.

5.2 Effective Jet Velocity

Ve,eff=βVbypass+Vcoreβ+1.V_{e,eff} = \frac{βV_{bypass} + V_{core}}{β + 1}.

Thrust: F=m˙core(VcoreV0)+m˙bypass(VbypassV0).F = \dot{m}_{core}(V_{core} - V_0) + \dot{m}_{bypass}(V_{bypass} - V_0).

5.3 Efficiency and Trade-offs

  • High ββ: higher propulsive efficiency, lower specific thrust.
  • Low ββ: higher specific thrust, lower efficiency.

Typical β510β ≈ 5–10 for modern turbofans.


6. Turbojet vs. Turbofan

ParameterTurbojetTurbofan
Bypass ratio05–10
EfficiencyModerateHigh
NoiseHighLow
Best forSupersonicSubsonic

7. Ramjet and Scramjet Engines

7.1 Ramjet (Subsonic Combustion)

  • Compression achieved by inlet shock system.
  • No rotating machinery.

Ideal efficiency: ηth=1T0Tcomb.η_{th} = 1 - \frac{T_0}{T_{comb}}.

Thrust: F=m˙(VeV0).F = \dot{m}(V_e - V_0).

Operates efficiently at M=36.M = 3–6.

7.2 Scramjet (Supersonic Combustion)

  • Flow remains supersonic throughout combustion.
  • Requires precompression via oblique shocks.

Energy balance: Q˙comb=m˙cp(Tt4Tt3).\dot{Q}_{comb} = \dot{m} c_p (T_{t4} - T_{t3}).

Efficiency depends on combustion residence time and mixing.


8. Rocket Engines (Contrast)

Thrust generation independent of ambient air: F=m˙pVe+(pep0)Ae.F = \dot{m}_p V_e + (p_e - p_0)A_e.

Specific impulse: Isp=Veg0.I_{sp} = \frac{V_e}{g_0}.

Key distinction: mass flow from onboard propellant, not atmosphere.


9. Component Efficiencies and Real Effects

ComponentEfficiencyDescription
Compressorηc=(Tt2sTt1)/(Tt2Tt1)η_c = (T_{t2s} - T_{t1}) / (T_{t2} - T_{t1})Polytropic loss
Turbineηt=(Tt3Tt4)/(Tt3Tt4s)η_t = (T_{t3} - T_{t4}) / (T_{t3} - T_{t4s})Expansion inefficiency
Combustorηb=(ht3ht2)/(fhfuel)η_b = (h_{t3} - h_{t2})/(f h_{fuel})Incomplete combustion
Nozzleηn=(Ve/Ve,isentropic)2η_n = (V_e/V_{e,isentropic})^2Kinetic energy recovery

Total-to-total efficiency: ηoverall=ηcηtηnηb.η_{overall} = η_c η_t η_n η_b.


10. Afterburning and Variable Geometry

10.1 Afterburner

Reheats exhaust gases downstream of turbine: qab=cp(Tt5Tt4).q_{ab} = c_p (T_{t5} - T_{t4}). Increases thrust but reduces efficiency dramatically.

10.2 Variable-Area Nozzle

Maintains optimal expansion across flight regimes: AeA=1Me[2γ+1(1+γ12Me2)](γ+1)/2(γ1).\frac{A_e}{A^*} = \frac{1}{M_e}\left[\frac{2}{γ+1}(1 + \frac{γ-1}{2}M_e^2)\right]^{(γ+1)/2(γ-1)}.


11. Exergy and Irreversibility in Propulsion Systems

Entropy generation in control volume: S˙gen=m˙(ses0)Q˙T0.\dot{S}_{gen} = \dot{m}(s_e - s_0) - \frac{\dot{Q}}{T_0}.

Exergy destruction rate: E˙D=T0S˙gen.\dot{E}_D = T_0 \dot{S}_{gen}.

Irreversibilities dominate in:

  • Combustion (chemical disequilibrium)
  • Turbine/compressor inefficiencies
  • Shock-induced entropy increase in high-Mach inlets

Exergy efficiency: ηex=1E˙DE˙input.η_{ex} = 1 - \frac{\dot{E}_D}{\dot{E}_{input}}.


12. Example Performance Parameters

Engine TypeBypass RatioTypical Isp (s)Flight Machη_o
Turbojet02000–25001–30.25–0.35
Turbofan5–103000–40000.8–1.20.35–0.45
Ramjet1000–12002–60.20–0.30
Scramjet1200–15006–150.15–0.25

  • Turbofan evolution: ultra-high bypass ratios → reduced fuel burn.
  • Variable cycle engines: adaptive geometry for Mach 0–5 operation.
  • Combined-cycle systems: turbine-based + airbreathing + rocket modes.
  • Electric and hybrid propulsion: integration with battery or fuel-cell sources.

14. Summary of Key Equations

ConceptEquationNotes
ThrustF=m˙(VeV0)+(pep0)AeF = \dot{m}(V_e - V_0) + (p_e - p_0)A_eMomentum–energy balance
Specific impulseIsp=F/(m˙fg0)I_{sp} = F/(\dot{m}_f g_0)Measure of fuel efficiency
Propulsive efficiencyηp=2V0/(Ve+V0)η_p = 2V_0/(V_e + V_0)Optimal when VeV0V_e ≈ V_0
Brayton thermal efficiencyηth=11/rp(γ1)/γη_{th} = 1 - 1/r_p^{(γ-1)/γ}Ideal gas model
Bypass ratioβ=m˙bypass/m˙coreβ = \dot{m}_{bypass}/\dot{m}_{core}Defines turbofan class
Exergy destructionED=T0SgenE_D = T_0 S_{gen}Irreversibility measure

  • Fluid_Dynamics/11_Turbomachinery_and_Compressible_Devices.md — compressor and turbine fundamentals.
  • Thermodynamics/10_NonEquilibrium_Thermodynamics.md — entropy production and chemical exergy.
  • Fluid_Dynamics/09_Compressible_and_Supersonic_Flow.md — shock and expansion dynamics.
  • Aero_Thermodynamics/HighSpeed_Propulsion.md — advanced hypersonic and combined-cycle systems.