Mathematical Foundations Reference
Mathematical Foundations Reference
This document consolidates transforms, probability, and statistics content from the Mathematics and Information databooks.
1. Fourier Series
Periodic function with period :
Complex Form
where .
2. Fourier Transforms
Let .
Definition
Common Transform Pairs
| Time domain | Frequency domain |
|---|---|
| DC level: | |
| Unit step: | |
| Complex exponential: | |
| Impulse train: | |
| Rectangular pulse | |
| Triangular pulse |
where .
Properties
| Property | Time domain | Frequency domain |
|---|---|---|
| Time shift | ||
| Frequency shift | ||
| Differentiation | ||
| Convolution | ||
| Multiplication |
Duality: If , then .
Parseval’s Theorem:
3. Discrete Fourier Transform (DFT)
For , :
Inverse:
Sampling Interpretation
- Sampling frequency:
- Total time:
- Frequency resolution:
- Nyquist frequency:
4. Z-Transforms
For sequence :
Key Properties
Time shift:
Initial value theorem:
Final value theorem:
(valid if poles lie inside unit circle)
5. Laplace Transforms
Initial value:
Final value:
6. Probability Fundamentals
Discrete Random Variables
Continuous Random Variables
Bayes’ Rule
7. Gaussian Distribution
Univariate
Standard Form
If , then:
Cumulative distribution:
Selected quantiles:
Multivariate Gaussian
Differential entropy:
KL divergence:
8. Information Theory
Entropy
Mutual Information
Differential Entropy
Key Inequalities
Data-processing inequality:
Fano’s inequality:
9. Special Functions
Error Function
Gamma Function
Gaussian Integral
10. Numerical Methods
Newton-Raphson
Trapezium Rule
Forward Euler
Sources
- Mathematics Data Book (2017 Edition), Cambridge University Engineering Department
- Information Data Book (2017 Edition, revised 2019 & 2021), Cambridge University Engineering Department