Mathematical Foundations Reference

Mathematical Foundations Reference

This document consolidates transforms, probability, and statistics content from the Mathematics and Information databooks.


1. Fourier Series

Periodic function with period TT:

f(t)=d+n=1(ancos2πntT+bnsin2πntT)f(t) = d + \sum_{n=1}^\infty \left( a_n \cos\frac{2\pi nt}{T} + b_n \sin\frac{2\pi nt}{T} \right)

Complex Form

f(t)=n=cneinω0tf(t) = \sum_{n=-\infty}^\infty c_n e^{in\omega_0 t}

where ω0=2π/T\omega_0 = 2\pi/T.


2. Fourier Transforms

Let ω=2πf\omega = 2\pi f.

Definition

G(ω)=g(t)ejωtdtG(\omega) = \int_{-\infty}^{\infty} g(t) e^{-j\omega t} \, dt

g(t)=12πG(ω)ejωtdωg(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{j\omega t} \, d\omega

Common Transform Pairs

Time domain g(t)g(t)Frequency domain G(ω)G(\omega)
DC level: 112πδ(ω)2\pi \delta(\omega)
Unit step: u(t)u(t)πδ(ω)+1jω\pi\delta(\omega) + \frac{1}{j\omega}
Complex exponential: ejω0te^{j\omega_0 t}2πδ(ωω0)2\pi\delta(\omega - \omega_0)
cos(ω0t)\cos(\omega_0 t)π[δ(ωω0)+δ(ω+ω0)]\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]
sin(ω0t)\sin(\omega_0 t)πj[δ(ωω0)δ(ω+ω0)]\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]
Impulse train: nδ(tnT)\sum_n \delta(t-nT)2πTmδ(ω2πmT)\frac{2\pi}{T}\sum_m \delta(\omega-\frac{2\pi m}{T})
Rectangular pulsesinc(ωb/2)\propto \mathrm{sinc}(\omega b/2)
Triangular pulsesinc2(ωb/2)\propto \mathrm{sinc}^2(\omega b/2)

where sinc(x)=sinxx\mathrm{sinc}(x) = \frac{\sin x}{x}.

Properties

PropertyTime domainFrequency domain
Time shiftg(tt0)g(t-t_0)ejωt0G(ω)e^{-j\omega t_0} G(\omega)
Frequency shiftejω0tg(t)e^{j\omega_0 t} g(t)G(ωω0)G(\omega-\omega_0)
Differentiationdngdtn\frac{d^n g}{dt^n}(jω)nG(ω)(j\omega)^n G(\omega)
Convolutiong1(t)g2(t)g_1(t) * g_2(t)G1(ω)G2(ω)G_1(\omega) G_2(\omega)
Multiplicationg1(t)g2(t)g_1(t) g_2(t)12π(G1G2)(ω)\frac{1}{2\pi}(G_1 * G_2)(\omega)

Duality: If g(t)p(ω)g(t) \leftrightarrow p(\omega), then p(t)2πg(ω)p(t) \leftrightarrow 2\pi g(-\omega).

Parseval’s Theorem: g(t)2dt=12πG(ω)2dω\int_{-\infty}^{\infty} |g(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(\omega)|^2 \, d\omega


3. Discrete Fourier Transform (DFT)

For xnx_n, n=0,,N1n = 0, \ldots, N-1:

Xk=n=0N1xnei2πkn/N,0kN1X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi kn/N}, \quad 0 \le k \le N-1

Inverse: xn=1Nk=0N1Xkei2πkn/Nx_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{i2\pi kn/N}

Sampling Interpretation

  • Sampling frequency: f0f_0
  • Total time: T=N/f0T = N/f_0
  • Frequency resolution: 1/T1/T
  • Nyquist frequency: f0/2f_0/2

4. Z-Transforms

For sequence gkg_k:

G(z)=k=0gkzkG(z) = \sum_{k=0}^{\infty} g_k z^{-k}

Key Properties

Time shift: gk+mzmG(z)zmg0zgm1g_{k+m} \longleftrightarrow z^m G(z) - z^m g_0 - \cdots - z g_{m-1}

Initial value theorem: g0=limzG(z)g_0 = \lim_{z \to \infty} G(z)

Final value theorem: limkgk=limz1(z1)G(z)\lim_{k \to \infty} g_k = \lim_{z \to 1} (z-1) G(z)

(valid if poles lie inside unit circle)


5. Laplace Transforms

xˉ(s)=0x(t)estdt\bar{x}(s) = \int_0^\infty x(t) e^{-st} \, dt

Initial value: x(0+)=limssxˉ(s)x(0^+) = \lim_{s \to \infty} s\bar{x}(s)

Final value: limtx(t)=lims0sxˉ(s)\lim_{t \to \infty} x(t) = \lim_{s \to 0} s\bar{x}(s)


6. Probability Fundamentals

Discrete Random Variables

E[X]=xxp(x)\mathbb{E}[X] = \sum_x x \, p(x)

Var[X]=E[X2]E[X]2\mathrm{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2

Continuous Random Variables

E[X]=xf(x)dx\mathbb{E}[X] = \int_{-\infty}^\infty x \, f(x) \, dx

Bayes’ Rule

p(xy)=p(yx)p(x)p(y)p(x|y) = \frac{p(y|x) p(x)}{p(y)}


7. Gaussian Distribution

Univariate

f(x)=1σ2πe(xμ)2/(2σ2)f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}

Standard Form

If XN(μ,σ2)X \sim \mathcal{N}(\mu, \sigma^2), then: Y=XμσN(0,1)Y = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0,1)

Cumulative distribution: Φ(z)=12πzex2/2dx\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-x^2/2} \, dx

Selected quantiles: Φ(1.96)=0.975,Φ(2.576)=0.995\Phi(1.96) = 0.975, \quad \Phi(2.576) = 0.995

Multivariate Gaussian

N(x;μ,Σ)=1(2π)DΣexp(12(xμ)TΣ1(xμ))\mathcal{N}(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)

Differential entropy: h(X)=12log((2πe)DΣ)h(X) = \frac{1}{2} \log\left((2\pi e)^D |\Sigma|\right)

KL divergence: KL(pq)=12(logΣ2Σ1D+tr(Σ21Σ1)+(μ1μ2)TΣ21(μ1μ2))\mathrm{KL}(p \| q) = \frac{1}{2}\left(\log\frac{|\Sigma_2|}{|\Sigma_1|} - D + \mathrm{tr}(\Sigma_2^{-1}\Sigma_1) + (\mu_1-\mu_2)^T\Sigma_2^{-1}(\mu_1-\mu_2)\right)


8. Information Theory

Entropy

H(X)=xP(x)log1P(x)H(X) = \sum_x P(x) \log \frac{1}{P(x)}

Mutual Information

I(X;Y)=H(X)H(XY)=D(PXYPXPY)I(X;Y) = H(X) - H(X|Y) = D(P_{XY} \| P_X P_Y)

Differential Entropy

h(X)=p(x)log1p(x)dxh(X) = \int p(x) \log \frac{1}{p(x)} \, dx

Key Inequalities

Data-processing inequality: I(X;Y)I(X;Z)I(X;Y) \ge I(X;Z)

Fano’s inequality: 1+PelogXH(XY)1 + P_e \log|\mathcal{X}| \ge H(X|Y)


9. Special Functions

Error Function

erf(x)=2π0xeu2du\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} \, du

Gamma Function

Γ(t)=0xt1exdx\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} \, dx

Gaussian Integral

eλu2du=πλ\int_{-\infty}^{\infty} e^{-\lambda u^2} \, du = \sqrt{\frac{\pi}{\lambda}}


10. Numerical Methods

Newton-Raphson

xn+1=xnf(xn)f(xn)x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

Trapezium Rule

abydxh2[y0+2(y1++yn1)+yn]\int_a^b y \, dx \approx \frac{h}{2}[y_0 + 2(y_1 + \cdots + y_{n-1}) + y_n]

Forward Euler

un+1=un+Δtf(un,tn)u_{n+1} = u_n + \Delta t \, f(u_n, t_n)


Sources

  • Mathematics Data Book (2017 Edition), Cambridge University Engineering Department
  • Information Data Book (2017 Edition, revised 2019 & 2021), Cambridge University Engineering Department