Mechanics Data Book

Cambridge University Engineering Department

Below is a faithful Markdown transcription of the Mechanics Data Book (2017 Edition), done in exactly the same style as the previous databooks:

  • Clean, structured Markdown
  • All mathematics in LaTeX (inline and display)
  • Tables preserved conceptually
  • Figures/diagrams referenced but not redrawn
  • No reinterpretation, only transcription and formatting

Source: Mechanics Data Book, Cambridge University Engineering Department (2017)


2017 Edition Cambridge University Engineering Department


Contents

  • Definitions
  1. Kinematics
  2. Geometry
  3. Mechanics of Machines
  4. Linear Systems, Vibration and Stability
  5. Areas, Volumes, Centres of Gravity and Moments of Inertia

Definitions

  • A system has one degree of freedom if its configuration is completely specified by one variable; two degrees of freedom if two variables are required.
  • A force is conservative if the work done against it is fully recoverable and independent of path; a conservative force field can be expressed as the gradient of a potential.
  • A rigid body is one in which the relative positions of all constituent particles remain constant under motion.
  • A frame of reference is a coordinate system (Cartesian unless otherwise stated).
  • A plane of motion is defined when all points move in a plane.
  • A sliding motion occurs if no point is fixed; pure rotation if a point is fixed; general plane motion otherwise.
  • The coefficient of friction is ( \mu ).
  • A frame of reference is accelerating if non-inertial (fictitious) forces appear.

1. Kinematics

1.1 Velocity and Acceleration in Polar Coordinates

For position vector ( \mathbf{r} = r,\mathbf{e}_r ):

[ \mathbf{v} = \dot r,\mathbf{e}r + r\dot\theta,\mathbf{e}\theta ]

[ \mathbf{a} = (\ddot r - r\dot\theta^2)\mathbf{e}r + (r\ddot\theta + 2\dot r\dot\theta)\mathbf{e}\theta ]


1.2 Velocity and Acceleration in Intrinsic Coordinates

Let ( s ) be arc length and ( R ) the radius of curvature:

[ \mathbf{v} = \dot s,\mathbf{t} ]

[ \mathbf{a} = \ddot s,\mathbf{t} + \frac{\dot s^2}{R},\mathbf{n} ]


1.3 Rotating Reference Frames

Relative Velocity

[ \mathbf{v}_P = \mathbf{v}_Q + \left(\frac{d\mathbf{r}}{dt}\right)_R + \boldsymbol{\omega}\times\mathbf{r} ]

Relative Acceleration

[ \mathbf{a}_P = \mathbf{a}_Q + \left(\frac{d^2\mathbf{r}}{dt^2}\right)_R + \dot{\boldsymbol{\omega}}\times\mathbf{r} + 2\boldsymbol{\omega}\times\left(\frac{d\mathbf{r}}{dt}\right)_R + \boldsymbol{\omega}\times(\boldsymbol{\omega}\times\mathbf{r}) ]


1.3.2 Rate of Change of a Vector

For vector ( \mathbf{x} ):

[ \left(\frac{d\mathbf{x}}{dt}\right)_F

\left(\frac{d\mathbf{x}}{dt}\right)_R + \boldsymbol{\omega}\times\mathbf{x} ]

If the origin moves with velocity ( \mathbf{U} ):

[ \left(\frac{d\mathbf{x}}{dt}\right)_F

\left(\frac{d\mathbf{x}}{dt}\right)_R + \boldsymbol{\omega}\times\mathbf{x} + (\mathbf{U}\cdot\nabla)\mathbf{x} ]


2. Geometry

2.1 Radius of Curvature

Cartesian coordinates: [ R = \frac{\left[1+(dy/dx)^2\right]^{3/2}}{|d^2y/dx^2|} ]

Parametric form: [ R = \frac{\left[(dx/dt)^2+(dy/dt)^2\right]^{3/2}} {|(dx/dt)(d^2y/dt^2)-(dy/dt)(d^2x/dt^2)|} ]

Polar coordinates: [ R = \frac{\left[r^2+(dr/d\theta)^2\right]^{3/2}} {r^2+2(dr/d\theta)^2-r(d^2r/d\theta^2)} ]

Intrinsic coordinates: [ R = \frac{ds}{d\psi} ]


2.2 Ellipse

Cartesian: [ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 ]

Polar (focus at origin): [ r = \frac{l}{1+e\cos\theta} ]

where: [ l=\frac{b^2}{a}, \qquad e=\sqrt{1-\frac{b^2}{a^2}} ]


2.3 Satellite Orbits

Gravitational force: [ F = \frac{GMm}{r^2} ]

Circular orbit velocity: [ v = \sqrt{\frac{GM}{r}} ]


2.4 Solids of Revolution (Pappus’ Theorems)

Volume: [ V = 2\pi A\bar x ]

Surface area: [ S = 2\pi P\bar x ]


3. Mechanics of Machines

3.1 Friction of a Rope or Belt

Slip begins when: [ \frac{T_1}{T_2} = e^{\mu\theta} ]


3.2 Kinematics of Cams or Gears

Angular velocity ratio: [ \frac{\omega_1}{\omega_2} = \frac{O_2N_2}{O_1N_1} ]

Sliding speed: [ C = (\omega_1-\omega_2)PC ]


4. Linear Systems, Vibration and Stability

4.1 Conservative System (1 DOF)

Potential energy ( V(q) ) Kinetic energy: [ T = \frac{1}{2}M(q)\dot q^2 ]

Equilibrium: [ V’(q_0)=0 ]

Stability: [ V”(q_0)>0 ]

Natural frequency: [ \omega_n^2 = \frac{V”(q_0)}{M(q_0)} ]


4.2 Response to a General Input

[ y(t)=\int_0^t g(t-\tau)x(\tau),d\tau ]


4.3 Routh–Hurwitz Stability Criteria

Second order: [ a_2\ddot x + a_1\dot x + a_0 x = 0 \quad\Rightarrow\quad a_i>0 ]

Third order: [ a_3a_2>a_1a_0 ]

Fourth order: [ a_3a_2a_1 > a_4a_1^2 + a_3^2a_0 ]


4.4 Step Response (Second Order)

[ \ddot y + 2\zeta\omega_n\dot y + \omega_n^2 y = x ]

  • ( \zeta=1 ): critical damping
  • ( \zeta<1 ): underdamped

Logarithmic decrement: [ \ln\frac{y_1}{y_2}=\frac{2\pi\zeta}{\sqrt{1-\zeta^2}} ]


4.5 Impulse Response

Impulse input: [ x=N\delta(t) ]

Response: [ y(t)=\frac{Ne^{-\zeta\omega_nt}}{\omega_n\sqrt{1-\zeta^2}} \sin(\omega_dt) ]

where: [ \omega_d=\omega_n\sqrt{1-\zeta^2} ]


4.6 Harmonic Response

Force excitation: [ x=X\cos\omega t ]

Amplitude ratio: [ \frac{|Y|}{|X|}

\frac{1} {\sqrt{(1-(\omega/\omega_n)^2)^2+(2\zeta\omega/\omega_n)^2}} ]

Resonance (small damping): [ \omega_r=\omega_n\sqrt{1-2\zeta^2} ]


4.7 Measures of Damping

QuantitySymbol( \zeta\ll1 )
Damping ratio( \zeta )
Quality factor( Q )( \frac{1}{2\zeta} )
Log decrement( \delta )( 2\pi\zeta )
Loss factor( \eta )( 2\zeta )

4.8 Modal Analysis

Eigenproblem: [ [K]\mathbf{u}_n = \omega_n^2[M]\mathbf{u}_n ]

Orthogonality: [ \mathbf{u}_m^T[M]\mathbf{u}n=\delta{mn} ]


4.9 Lagrange’s Equations

[ \frac{d}{dt}\left(\frac{\partial T}{\partial\dot q_i}\right)

\frac{\partial T}{\partial q_i} + \frac{\partial V}{\partial q_i}

Q_i ]


4.10 Euler’s Equations (Rigid Body)

[ A\dot\omega_1-(B-C)\omega_2\omega_3=Q_1 ] [ B\dot\omega_2-(C-A)\omega_3\omega_1=Q_2 ] [ C\dot\omega_3-(A-B)\omega_1\omega_2=Q_3 ]


5. Areas, Volumes, Centres of Gravity and Moments of Inertia

5.1 Lamina

[ I_{xx}=\int y^2,dm = mk_x^2 ]

Parallel axis theorem: [ I_{xx}=I_{x’x’}+md^2 ]

Perpendicular axis (lamina only): [ I_{zz}=I_{xx}+I_{yy} ]


5.2 Three-Dimensional Bodies

Inertia tensor: [ \mathbf{I}= \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz}
-I_{yx} & I_{yy} & -I_{yz}
-I_{zx} & -I_{zy} & I_{zz} \end{bmatrix} ]


5.3–5.6 Standard Shapes

  • Rods (straight, curved)
  • Laminae (rectangular, triangular, elliptical, polygonal)
  • Solids of revolution (cylinder, sphere, cone, toroid)
  • Shells of revolution

(Formulae as tabulated in pages 17–20)


If you want next steps, I can:

  • Split this into sectioned Markdown files
  • Extract all formulae only into a compact reference
  • Convert to LaTeX / PDF / mdBook
  • Harmonise notation across Mechanics + Materials + Electrical + Information databooks

Just tell me the target format.