Mathematical Foundations Reference

Cambridge University Engineering Department

Mathematical Foundations Reference

This document consolidates transforms, probability, and statistics content from the Mathematics and Information databooks.


1. Fourier Series

Periodic function with period TT:

f(t)=d+n=1(ancos2πntT+bnsin2πntT)f(t) = d + \sum_{n=1}^\infty \left( a_n \cos\frac{2\pi nt}{T} + b_n \sin\frac{2\pi nt}{T} \right)

Complex Form

f(t)=n=cneinω0tf(t) = \sum_{n=-\infty}^\infty c_n e^{in\omega_0 t}

where ω0=2π/T\omega_0 = 2\pi/T.


2. Fourier Transforms

Let ω=2πf\omega = 2\pi f.

Definition

G(ω)=g(t)ejωtdtG(\omega) = \int_{-\infty}^{\infty} g(t) e^{-j\omega t} \, dt

g(t)=12πG(ω)ejωtdωg(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{j\omega t} \, d\omega

Common Transform Pairs

Time domain g(t)g(t)Frequency domain G(ω)G(\omega)
DC level: 112πδ(ω)2\pi \delta(\omega)
Unit step: u(t)u(t)πδ(ω)+1jω\pi\delta(\omega) + \frac{1}{j\omega}
Complex exponential: ejω0te^{j\omega_0 t}2πδ(ωω0)2\pi\delta(\omega - \omega_0)
cos(ω0t)\cos(\omega_0 t)π[δ(ωω0)+δ(ω+ω0)]\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]
sin(ω0t)\sin(\omega_0 t)πj[δ(ωω0)δ(ω+ω0)]\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]
Impulse train: nδ(tnT)\sum_n \delta(t-nT)2πTmδ(ω2πmT)\frac{2\pi}{T}\sum_m \delta(\omega-\frac{2\pi m}{T})
Rectangular pulsesinc(ωb/2)\propto \mathrm{sinc}(\omega b/2)
Triangular pulsesinc2(ωb/2)\propto \mathrm{sinc}^2(\omega b/2)

where sinc(x)=sinxx\mathrm{sinc}(x) = \frac{\sin x}{x}.

Properties

PropertyTime domainFrequency domain
Time shiftg(tt0)g(t-t_0)ejωt0G(ω)e^{-j\omega t_0} G(\omega)
Frequency shiftejω0tg(t)e^{j\omega_0 t} g(t)G(ωω0)G(\omega-\omega_0)
Differentiationdngdtn\frac{d^n g}{dt^n}(jω)nG(ω)(j\omega)^n G(\omega)
Convolutiong1(t)g2(t)g_1(t) * g_2(t)G1(ω)G2(ω)G_1(\omega) G_2(\omega)
Multiplicationg1(t)g2(t)g_1(t) g_2(t)12π(G1G2)(ω)\frac{1}{2\pi}(G_1 * G_2)(\omega)

Duality: If g(t)p(ω)g(t) \leftrightarrow p(\omega), then p(t)2πg(ω)p(t) \leftrightarrow 2\pi g(-\omega).

Parseval’s Theorem: g(t)2dt=12πG(ω)2dω\int_{-\infty}^{\infty} |g(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(\omega)|^2 \, d\omega


3. Discrete Fourier Transform (DFT)

For xnx_n, n=0,,N1n = 0, \ldots, N-1:

Xk=n=0N1xnei2πkn/N,0kN1X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi kn/N}, \quad 0 \le k \le N-1

Inverse: xn=1Nk=0N1Xkei2πkn/Nx_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{i2\pi kn/N}

Sampling Interpretation

  • Sampling frequency: f0f_0
  • Total time: T=N/f0T = N/f_0
  • Frequency resolution: 1/T1/T
  • Nyquist frequency: f0/2f_0/2

4. Z-Transforms

For sequence gkg_k:

G(z)=k=0gkzkG(z) = \sum_{k=0}^{\infty} g_k z^{-k}

Key Properties

Time shift: gk+mzmG(z)zmg0zgm1g_{k+m} \longleftrightarrow z^m G(z) - z^m g_0 - \cdots - z g_{m-1}

Initial value theorem: g0=limzG(z)g_0 = \lim_{z \to \infty} G(z)

Final value theorem: limkgk=limz1(z1)G(z)\lim_{k \to \infty} g_k = \lim_{z \to 1} (z-1) G(z)

(valid if poles lie inside unit circle)


5. Laplace Transforms

xˉ(s)=0x(t)estdt\bar{x}(s) = \int_0^\infty x(t) e^{-st} \, dt

Initial value: x(0+)=limssxˉ(s)x(0^+) = \lim_{s \to \infty} s\bar{x}(s)

Final value: limtx(t)=lims0sxˉ(s)\lim_{t \to \infty} x(t) = \lim_{s \to 0} s\bar{x}(s)


6. Probability Fundamentals

Discrete Random Variables

E[X]=xxp(x)\mathbb{E}[X] = \sum_x x \, p(x)

Var[X]=E[X2]E[X]2\mathrm{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2

Continuous Random Variables

E[X]=xf(x)dx\mathbb{E}[X] = \int_{-\infty}^\infty x \, f(x) \, dx

Bayes’ Rule

p(xy)=p(yx)p(x)p(y)p(x|y) = \frac{p(y|x) p(x)}{p(y)}


7. Gaussian Distribution

Univariate

f(x)=1σ2πe(xμ)2/(2σ2)f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}

Standard Form

If XN(μ,σ2)X \sim \mathcal{N}(\mu, \sigma^2), then: Y=XμσN(0,1)Y = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0,1)

Cumulative distribution: Φ(z)=12πzex2/2dx\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-x^2/2} \, dx

Selected quantiles: Φ(1.96)=0.975,Φ(2.576)=0.995\Phi(1.96) = 0.975, \quad \Phi(2.576) = 0.995

Multivariate Gaussian

N(x;μ,Σ)=1(2π)DΣexp(12(xμ)TΣ1(xμ))\mathcal{N}(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)

Differential entropy: h(X)=12log((2πe)DΣ)h(X) = \frac{1}{2} \log\left((2\pi e)^D |\Sigma|\right)

KL divergence: KL(pq)=12(logΣ2Σ1D+tr(Σ21Σ1)+(μ1μ2)TΣ21(μ1μ2))\mathrm{KL}(p \| q) = \frac{1}{2}\left(\log\frac{|\Sigma_2|}{|\Sigma_1|} - D + \mathrm{tr}(\Sigma_2^{-1}\Sigma_1) + (\mu_1-\mu_2)^T\Sigma_2^{-1}(\mu_1-\mu_2)\right)


8. Information Theory

Entropy

H(X)=xP(x)log1P(x)H(X) = \sum_x P(x) \log \frac{1}{P(x)}

Mutual Information

I(X;Y)=H(X)H(XY)=D(PXYPXPY)I(X;Y) = H(X) - H(X|Y) = D(P_{XY} \| P_X P_Y)

Differential Entropy

h(X)=p(x)log1p(x)dxh(X) = \int p(x) \log \frac{1}{p(x)} \, dx

Key Inequalities

Data-processing inequality: I(X;Y)I(X;Z)I(X;Y) \ge I(X;Z)

Fano’s inequality: 1+PelogXH(XY)1 + P_e \log|\mathcal{X}| \ge H(X|Y)


9. Special Functions

Error Function

erf(x)=2π0xeu2du\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} \, du

Gamma Function

Γ(t)=0xt1exdx\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} \, dx

Gaussian Integral

eλu2du=πλ\int_{-\infty}^{\infty} e^{-\lambda u^2} \, du = \sqrt{\frac{\pi}{\lambda}}


10. Numerical Methods

Newton-Raphson

xn+1=xnf(xn)f(xn)x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

Trapezium Rule

abydxh2[y0+2(y1++yn1)+yn]\int_a^b y \, dx \approx \frac{h}{2}[y_0 + 2(y_1 + \cdots + y_{n-1}) + y_n]

Forward Euler

un+1=un+Δtf(un,tn)u_{n+1} = u_n + \Delta t \, f(u_n, t_n)


Sources

  • Mathematics Data Book (2017 Edition), Cambridge University Engineering Department
  • Information Data Book (2017 Edition, revised 2019 & 2021), Cambridge University Engineering Department