Materials and Structures Data Book
Cambridge University Engineering Department
Materials and Structures Reference
This document consolidates content from the Materials Data Book and Structures Data Book, eliminating redundant elastic moduli definitions while preserving all material properties and structural analysis content.
Part I: Fundamental Definitions
1.1 Stress and Strain
Nominal stress:
True stress:
Nominal strain:
True strain:
Poisson’s ratio:
Young’s modulus:
1.2 Elastic Moduli Relations (Isotropic Solids)
Approximate values for polycrystalline solids:
1.3 Stress Notation
- : normal stress on the -face in the -direction
- : shear stress on the -face in the -direction
- Tension is positive (except in soil mechanics)
1.4 Strain Definition
Part II: Physical Properties of Materials
2.1 Representative Values (Typical)
| Property | Steel | Al alloy | Concrete | Softwood | Units |
|---|---|---|---|---|---|
| Young’s modulus | 210 | 70 | 30 | 9 | GPa |
| Shear modulus | 81 | 26 | 13 | - | GPa |
| Bulk modulus | 175 | 69 | 14 | - | GPa |
| Poisson’s ratio | 0.30 | 0.33 | 0.15 | - | - |
| Thermal expansion | 11 | 23 | 12 | - | K |
| Density | 7840 | 2700 | 2400 | - | kg m |
2.2 Unidirectional Composites
Parallel modulus:
Transverse modulus:
Tensile strength (parallel):
Part III: Constitutive Relations
3.1 Stress-Strain Relations (Isotropic Elastic Solids)
Plane stress (, ):
3.2 Complementary Shear
3.3 Planar Transformation of Stress
For rotation by angle :
3.4 Principal Stresses (3D)
Principal stresses are eigenvalues of:
\sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}$$ --- ## Part IV: Yield and Fracture Criteria ### 4.1 Yield Criteria (Isotropic Solids) **Tresca:** $$\max\left(|\sigma_1-\sigma_2|, |\sigma_2-\sigma_3|, |\sigma_3-\sigma_1|\right) = Y$$ **von Mises:** $$(\sigma_1-\sigma_2)^2 + (\sigma_2-\sigma_3)^2 + (\sigma_3-\sigma_1)^2 = 2Y^2$$ ### 4.2 Dislocations and Plastic Flow **Force on a dislocation:** $$F = \tau b$$ **Critical shear stress:** $$\tau_y = \frac{cT}{bL}$$ **Relations:** $$k \approx \frac{3}{2}\tau_y, \qquad \sigma_y \approx 2k$$ **Hardness:** $$H \approx 3\sigma_y$$ ### 4.3 Fast Fracture **Stress intensity factor:** $$K = Y\sigma\sqrt{\pi a}$$ **Fracture condition:** $$K = K_{IC}$$ **Energy release rate:** $$G = \frac{K^2}{E}(1-\nu^2) \approx \frac{K^2}{E}$$ **Process zone size:** $$r_p = \frac{1}{2\pi}\left(\frac{K_{IC}}{\sigma_f}\right)^2$$ ### 4.4 Statistics of Fracture (Weibull) $$P_s(V) = \exp\left[-\left(\frac{\sigma}{\sigma_0}\right)^m \frac{V}{V_0}\right]$$ --- ## Part V: Fatigue and Creep ### 5.1 Fatigue **Basquin's law:** $$N_f = C_1 (\Delta\sigma)^{-\alpha}$$ **Coffin-Manson:** $$N_f = C_2 (\Delta\varepsilon_p)^{-\beta}$$ **Goodman relation:** $$\Delta\sigma = \Delta\sigma_0 \left(1 - \frac{\sigma_m}{\sigma_{ts}}\right)$$ **Paris law:** $$\frac{da}{dN} = A(\Delta K)^n$$ ### 5.2 Creep **Power-law creep:** $$\dot{\varepsilon}_{ss} = A\sigma^n \exp\left(-\frac{Q}{RT}\right)$$ --- ## Part VI: Diffusion and Heat Flow ### 6.1 Diffusion $$D = D_0 \exp\left(-\frac{Q}{RT}\right)$$ **Fick's laws:** $$J = -D\frac{dC}{dx}, \qquad \frac{\partial C}{\partial t} = D\frac{\partial^2 C}{\partial x^2}$$ ### 6.2 Heat Flow **Fourier's law:** $$q = -\lambda \frac{dT}{dx}$$ **Transient conduction:** $$\frac{\partial T}{\partial t} = a\frac{\partial^2 T}{\partial x^2}$$ --- ## Part VII: Structural Analysis ### 7.1 Thin-Walled Pressure Vessels (Closed Ends) $$\sigma_h = \frac{pr}{t}, \qquad \sigma_l = \frac{pr}{2t}$$ ### 7.2 Beam Behaviour **Sign convention:** - Positive bending: tension at bottom fibre - Positive shear: clockwise rotation **Compatibility:** $$\kappa = \frac{d\psi}{ds}, \qquad \varepsilon = \kappa y$$ For small deflections: $$\kappa \approx -\frac{d^2v}{dx^2}$$ **Equilibrium:** $$\frac{dM}{dx} = S, \qquad \frac{dS}{dx} = w$$ **Elastic bending:** $$\kappa = \frac{M}{EI}, \qquad \sigma = \frac{My}{I}, \qquad \sigma_{\max} = \frac{M}{Z_e}$$ ### 7.3 Plastic Bending **First yield:** $$M_y = Z_e \sigma_y$$ **Fully plastic:** $$M_p = Z_p \sigma_y$$ ### 7.4 Torsion **Circular shafts:** $$\tau = \frac{Tr}{J}, \qquad \phi = \frac{T}{GJ}$$ **Thin-walled closed sections:** $$q = \frac{T}{2A_e}, \qquad \phi = \frac{T}{4G}\oint\frac{ds}{tA_e}$$ ### 7.5 Euler Buckling $$P_E = \frac{\pi^2 EI}{L^2}$$ $$\sigma_E = \frac{P_E}{A} = \frac{\pi^2 E}{(L/k)^2}$$ ### 7.6 Pin-Jointed Trusses **Modified Maxwell rule:** $$s - m = b + r - Dj$$ ### 7.7 Virtual Work $$\sum W \cdot \delta = \sum P \cdot e$$ ### 7.8 Cables **Cable on curved surface:** $$\frac{T_1}{T_2} = e^{\mu\theta}$$ **Cable with uniform load (small sag):** $$T \approx \frac{wL^2}{2d}$$ --- ## Part VIII: Soil Mechanics ### 8.1 Definitions **Void ratio:** $$e = \frac{V_v}{V_s}$$ **Water content:** $$w = \frac{W_w}{W_s}$$ **Effective stress:** $$\sigma' = \sigma - u$$ ### 8.2 Particle Size Classification - Clay: < 0.002 mm - Silt: 0.002 - 0.06 mm - Sand: 0.06 - 2 mm ### 8.3 Groundwater Seepage $$v = ki$$ ### 8.4 Undrained Strength (Tresca) $$\tau_{\max} = c_u$$ $$\sigma_a = \sigma_v - 2c_u, \qquad \sigma_p = \sigma_v + 2c_u$$ ### 8.5 Drained Strength (Coulomb) $$K_a = \frac{1-\sin\phi'}{1+\sin\phi'}, \qquad K_p = \frac{1+\sin\phi'}{1-\sin\phi'}$$ --- ## Part IX: Reinforced Concrete Design **Design strengths:** $$f_{cd} = \alpha_{cc}\frac{f_{ck}}{1.5}, \qquad f_{yd} = \frac{f_{yk}}{1.15}$$ **Bending capacity (singly reinforced):** $$M = f_{yd} A_s \left(d - \frac{x}{2}\right)$$ **Steel types:** - High-yield steel: $f_{yk} = 500$ MPa - Mild steel: $f_{yk} = 250$ MPa --- ## Part X: Material Classification ### Metals - Ferrous and non-ferrous alloys - Applications: automotive, aerospace, nuclear, structural ### Polymers and Foams - Elastomers, thermoplastics, thermosets, foams ### Composites, Ceramics, Natural Materials - CFRP, GFRP, alumina, SiC, wood, bamboo --- ## Part XI: Phase Diagrams and Heat Treatment ### Binary Phase Diagrams Cu-Ni, Pb-Sn, Fe-C, Al-Cu, Al-Si, Cu-Zn, Cu-Sn, Ti-Al, SiO$_2$-Al$_2$O$_3$ ### Heat Treatment of Steels - TTT diagrams - Jominy end-quench hardenability curves --- ## Sources - Materials Data Book (2011 Edition, revised 2019), Cambridge University Engineering Department - Structures Data Book (2018 Edition), Cambridge University Engineering Department